1
|
Betzler AC, Brunner C. The Role of the Transcriptional Coactivator BOB.1/OBF.1 in Adaptive Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:53-77. [PMID: 39017839 DOI: 10.1007/978-3-031-62731-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany.
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Nagaharu K, Kojima Y, Hirose H, Minoura K, Hinohara K, Minami H, Kageyama Y, Sugimoto Y, Masuya M, Nii S, Seki M, Suzuki Y, Tawara I, Shimamura T, Katayama N, Nishikawa H, Ohishi K. A bifurcation concept for B-lymphoid/plasmacytoid dendritic cells with largely fluctuating transcriptome dynamics. Cell Rep 2022; 40:111260. [PMID: 36044861 DOI: 10.1016/j.celrep.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hematopoiesis was considered a hierarchical stepwise process but was revised to a continuous process following single-cell RNA sequencing. However, the uncertainty or fluctuation of single-cell transcriptome dynamics during differentiation was not considered, and the dendritic cell (DC) pathway in the lymphoid context remains unclear. Here, we identify human B-plasmacytoid DC (pDC) bifurcation as large fluctuating transcriptome dynamics in the putative B/NK progenitor region by dry and wet methods. By converting splicing kinetics into diffusion dynamics in a deep generative model, our original computational methodology reveals strong fluctuation at B/pDC bifurcation in IL-7Rα+ regions, and LFA-1 fluctuates positively in the pDC direction at the bifurcation. These expectancies are validated by the presence of B/pDC progenitors in the IL-7Rα+ fraction and preferential expression of LFA-1 in pDC-biased progenitors with a niche-like culture system. We provide a model of fluctuation-based differentiation, which reconciles continuous and discrete models and is applicable to other developmental systems.
Collapse
Affiliation(s)
- Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yasuhiro Kojima
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kodai Minoura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hirohito Minami
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuki Kageyama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuka Sugimoto
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Shigeru Nii
- Shiroko Women's Hospital, Suzuka 510-0235, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan; Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan; Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan.
| | - Kohshi Ohishi
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu 514-8507, Japan.
| |
Collapse
|
3
|
Betzler AC, Fiedler K, Hoffmann TK, Fehling HJ, Wirth T, Brunner C. BOB.1/OBF.1 is required during B-cell ontogeny for B-cell differentiation and germinal center function. Eur J Immunol 2021; 52:404-417. [PMID: 34918350 DOI: 10.1002/eji.202149333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022]
Abstract
BOB.1/OBF.1 is a lymphocyte-specific transcriptional co-activator of octamer-dependent transcription. It regulates the expression of genes important for lymphocyte physiology together with the Oct-1 and Oct-2 transcription factors. So far, BOB.1/OBF.1 has been studied in conventional knockout mice, whereby a function of BOB.1/OBF.1 in B but also in T cells was described. The main characteristic of BOB.1/OBF.1-deficient mice is the complete absence of germinal centers. However, it is entirely unsolved at which stage of B-cell development BOB.1/OBF.1 expression is essential for germinal center formation. Still, it is not known whether defects observed late in B-cell development of BOB.1/OBF.1-deficient mice are merely a consequence of defective early B-cell development. To answer the question, whether BOB.1/OBF.1 expression is required before or during the process of germinal center formation, we established a mouse system, which allows the conditional deletion of BOB.1/OBF.1 at different stages of B-cell development. Our data reveal a requirement for BOB.1/OBF.1 during both early antigen-independent and late antigen-dependent B-cell development, and further a requirement for efficient germinal center reaction during complete B-cell ontogeny. By specifically deleting BOB.1/OBF.1 in germinal center B cells, we provide evidence that the failure to form germinal centers is a germinal center B-cell intrinsic defect and not exclusively a consequence of defective early B-cell maturation.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Katja Fiedler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany.,Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | | | - Thomas Wirth
- Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
Meng J, Wen H, Li X, Luan B, Gong S, Wen J, Wang Y, Wang L. POU class 2 homeobox associating factor 1 (POU2AF1) participates in abdominal aortic aneurysm enlargement based on integrated bioinformatics analysis. Bioengineered 2021; 12:8980-8993. [PMID: 34637689 PMCID: PMC8806937 DOI: 10.1080/21655979.2021.1990822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is life-threatening, its natural course is progressively sac expansion and rupture. Elegant studies have been conducted to investigate the molecular markers associated with AAA growth and expansion, this topic however, still needs to be further elucidated. This study aimed to identify potential genes for AAA growth and expansion based on comprehensive bioinformatics approaches. Firstly, 29 up-regulated genes were identified through DEGs analysis between large AAA and small AAA in GSE57691. Secondly, signed WGCNA analysis was conducted based on GSE57691 and the green module was found to exhibit the topmost correlation with large AAA as well as AAA, 133 WGCNA hub genes were further identified. Merged gene set including 29 up-regulated DEGs and 858 green module genes was subjected to constructing a PPI network where 195 PPI hub genes were identified. Subsequently, 4 crucial genes including POU2AF1, FCRLA, CD79B, HLA-DOB were recognized by Venn plot. In addition, by using GSE7084 and GSE98278 for verification, POU2AF1 showed potential diagnostic value between AAA and normal groups, and exhibited a significant higher expression level in large AAA samples compared with small AAA samples. Furthermore, immunohistochemistry results indicated up-regulation of POU2AF1 in large AAA samples than small AAA samples, which implies POU2AF1 may be a key regulator in AAA enlargement and growth. In summary, this study indicates that POU2AF1 has great predictive value for the expansion of AAA, and may contribute to the further exploration of pathogenesis and progression of AAA.
Collapse
Affiliation(s)
- Jinze Meng
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Jie Wen
- Department of Ultrasonography, Inner Mongolia Baotou City Central Hospital, Baotou, China
| | - Yifei Wang
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Lei Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| |
Collapse
|
5
|
King HW, Wells KL, Shipony Z, Kathiria AS, Wagar LE, Lareau C, Orban N, Capasso R, Davis MM, Steinmetz LM, James LK, Greenleaf WJ. Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci. Sci Immunol 2021; 6:eabh3768. [PMID: 34623901 PMCID: PMC8859880 DOI: 10.1126/sciimmunol.abh3768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The germinal center (GC) response is critical for both effective adaptive immunity and establishing peripheral tolerance by limiting autoreactive B cells. Dysfunction in these processes can lead to defective immune responses to infection or contribute to autoimmune disease. To understand the gene regulatory principles underlying the GC response, we generated a single-cell transcriptomic and epigenomic atlas of the human tonsil, a widely studied and representative lymphoid tissue. We characterize diverse immune cell subsets and build a trajectory of dynamic gene expression and transcription factor activity during B cell activation, GC formation, and plasma cell differentiation. We subsequently leverage cell type–specific transcriptomic and epigenomic maps to interpret potential regulatory impact of genetic variants implicated in autoimmunity, revealing that many exhibit their greatest regulatory potential in GC-associated cellular populations. These included gene loci linked with known roles in GC biology (IL21, IL21R, IL4R, and BCL6) and transcription factors regulating B cell differentiation (POU2AF1 and HHEX). Together, these analyses provide a powerful new cell type–resolved resource for the interpretation of cellular and genetic causes underpinning autoimmune disease.
Collapse
Affiliation(s)
- Hamish W King
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Kristen L Wells
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Arwa S Kathiria
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Caleb Lareau
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Nara Orban
- Barts Health Ear, Nose and Throat Service, The Royal London Hospital, London, UK
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lars M Steinmetz
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Stanford, CA, USA
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Louisa K James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan–Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
6
|
Kealy L, Good-Jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab018. [PMID: 36845573 PMCID: PMC8499879 DOI: 10.1093/oxfimm/iqab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,Correspondence address. Department of Biochemistry and Molecular Biology, Monash University, Ground floor reception, 23 Innovation Walk (Bldg 77), Clayton, Victoria 3800 Australia. Tel: (+613) 990-29510; E-mail: ; Twitter: @KimLJacobson
| |
Collapse
|
7
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Yeremenko N, Danger R, Baeten D, Tomilin A, Brouard S. Transcriptional regulator BOB.1: Molecular mechanisms and emerging role in chronic inflammation and autoimmunity. Autoimmun Rev 2021; 20:102833. [PMID: 33864944 DOI: 10.1016/j.autrev.2021.102833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Lymphocytes constitute an essential and potent effector compartment of the immune system. Therefore, their development and functions must be strictly regulated to avoid inappropriate immune responses, such as autoimmune reactions. Several lines of evidence from genetics (e.g. association with multiple sclerosis and primary biliary cirrhosis), human expression studies (e.g. increased expression in target tissues and draining lymph nodes of patients with autoimmune diseases), animal models (e.g. loss of functional protein protects animals from the development of collagen-induced arthritis, experimental autoimmune encephalomyelitis, type 1 diabetes, bleomycin-induced fibrosis) strongly support a causal link between the aberrant expression of the lymphocyte-restricted transcriptional regulator BOB.1 and the development of autoimmune diseases. In this review, we summarize the current knowledge of unusual structural and functional plasticity of BOB.1, stringent regulation of its expression, and the pivotal role that BOB.1 plays in shaping B- and T-cell responses. We discuss recent developments highlighting the significant contribution of BOB.1 to the pathogenesis of autoimmune diseases and how to leverage our knowledge to target this regulator to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Nataliya Yeremenko
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France; Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Richard Danger
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dominique Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russian Federation
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
9
|
Chu CS, Hellmuth JC, Singh R, Ying HY, Skrabanek L, Teater MR, Doane AS, Elemento O, Melnick AM, Roeder RG. Unique Immune Cell Coactivators Specify Locus Control Region Function and Cell Stage. Mol Cell 2020; 80:845-861.e10. [PMID: 33232656 DOI: 10.1016/j.molcel.2020.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.
Collapse
Affiliation(s)
- Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Johannes C Hellmuth
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rajat Singh
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hsia-Yuan Ying
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucy Skrabanek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew R Teater
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashley S Doane
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Peng Y, Guo F, Liao S, Liao H, Xiao H, Yang L, Liu H, Pan Q. Altered frequency of peripheral B-cell subsets and their correlation with disease activity in patients with systemic lupus erythematosus: A comprehensive analysis. J Cell Mol Med 2020; 24:12044-12053. [PMID: 32918534 PMCID: PMC7579696 DOI: 10.1111/jcmm.15836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023] Open
Abstract
Alternations of peripheral B-cell subsets are closely related to disease activity in systemic lupus erythematosus (SLE) and may also predict the relapse of SLE. In this study, we aimed to comprehensively analyse the frequency of peripheral B-cell subsets, and their correlation with disease activity in patients with SLE. The results showed that for B-cell subsets in the antigen-independent differentiation stage, the frequency of the peripheral hematopoietic stem cell (HSC) subset in all patients with SLE was significantly higher than that of control patients. Surprisingly, several significant correlations were noted in newly diagnosed patients with SLE including a positive correlation in the frequency of the common lymphoid progenitor cell (CLP) with cholesterol serum levels. For B-cell subsets in the antigen-dependent differentiation stage, the frequency of naïve B-cell (N-B) subsets in all patients with SLE was significantly higher than that in the control patients. Moreover, the frequency of plasmablasts positively correlated with the SLEDAI score in the newly diagnosed patients. For memory B-cell (M-B) subtypes in the antigen-dependent differentiation stage, the frequency of the class-switched memory B-cell (CSM-B) subsets was positively correlated with the serum levels of complement C3. Notably, the frequency of the CSM-B subset also negatively correlated with the SLEDAI score, whereas the non-class-switched memory B-cell (NSM-B) subset was positively correlated with the serum levels of haemoglobin. Collectively, these findings may contribute to a better understanding of the role played by different B-cell subsets in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yanxia Peng
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
- Central Laboratory and Department of NeurologyShunde HospitalSouthern Medical University (The First People’s Hospital of Shunde Foshan)FoshanChina
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
- Department of Histology and EmbryologyShantou University Medical CollegeShantouChina
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Huanjin Liao
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Xiao
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGAUSA
| | - Lawei Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Hua‐feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|