Jiang Y, He R, Shi Y, Liang J, Zhao L. Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS.
Life Sci 2020;
256:117987. [PMID:
32569778 DOI:
10.1016/j.lfs.2020.117987]
[Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
AIMS
Ischemic stroke is the leading cause of severe disability and death worldwide. As the pathogenesis of stroke has not been clearly elucidated and the ability of current therapeutic drugs on crossing the blood-brain barrier (BBB) is extremely low, there is no effective strategy to treat stroke. We aim at investigating the specific advantages of using plasma exosomes (Pla-Exo) for targeting ischemic brain and exploring its underlying mechanism in neuroprotection.
MAIN METHODS
Pla-Exo was obtained by a gradient ultracentrifugation of fresh plasma. The quantification of penetrated Pla-Exo through BBB was investigated in vitro BBB model, furthermore, the effects of Pla-Exo and exosomal HSP70 on cerebral ischemia/reperfusion injury were evaluated.
KEY FINDINGS
Pla-Exo enhanced BBB crossing by specific interaction between Pla-Exo inherited heat shock protein 70 (HSP70) and endothelial Toll-like receptor 4 (TLR4). As expected, Pla-Exo increased HSP70 expression in the ischemic region through the transfer of HSP70, and led to HSP70 mediated suppression of ROS, thus alleviating cerebral ischemia/reperfusion (I/R) injury by attenuating the deterioration of BBB and preventing mitochondria damage.
SIGNIFICANCE
These findings indicated that Pla-Exo can provide protection against ischemia-reperfusion injury via the regulation of HSP70 and it should be further studied as a potential candidate for protection against ischemic injury.
Collapse