1
|
Chen Y, Dong GH, Li S, Liu Y, Li S, Guo Y, Wang C, Chen G. The associations between exposure to ambient air pollution and coagulation markers and the potential effects of DNA methylation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136433. [PMID: 39541886 DOI: 10.1016/j.jhazmat.2024.136433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Previous studies have illustrated the pivotal role of coagulation biomarkers in the link between air pollution and cardiovascular disease (CVD). However, inconsistencies remain in the conclusions, with limited studies conducted in rural areas of China. We conducted a panel study in rural areas of Henan Province, China. Considering the potential effect modifications of atherosclerotic cardiovascular disease (ASCVD) risks, 104 participants were enrolled, comprising two matched groups: 52 with high ASCVD risks and 52 with low ASCVD risks. DNA methylation at CpG sites and coagulation indices were measured for all participants. Linear mixed-effect regression models were used to evaluate the associations between ambient air pollution, coagulation biomarkers, and DNA methylation. We observed that for every 5-day standard deviation (SD) increment of PM2.5 (11.91 μg/m³) and PM10 (13.65 μg/m³), fibrinogen increased by 7.70 % (95 %CI: 2.27, 13.12) and 8.50 % (95 %CI: 2.46, 14.55), respectively. SO2 (6.95 μg/m³) was associated with 40.25 % (95 %CI: 14.83, 65.67) increase in plasminogen activator inhibitor-1 (PAI-1). Decreased methylation at CpG sites was associated with exposure to air pollution. However, DNA methylation did not mediate the association between ambient air pollution and coagulation. Our study revealed the harmful impact of ambient air pollution on coagulation function but found no significant mediation effects of DNA methylation.
Collapse
Affiliation(s)
- Yan Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, the University of Melbourne, Melbourne, VIC 3053, Australia
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangdong 510080, China
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
2
|
Gilani M, Abak N, Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine. Pharmacol Biochem Behav 2024; 245:173897. [PMID: 39424200 DOI: 10.1016/j.pbb.2024.173897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Mood and anxiety disorders are complex psychiatric conditions shaped by the multifactorial interplay of genetic, epigenetic, and neuropeptide factors. This review aims to elucidate the intricate interactions among these factors and their potential in advancing personalized medicine. We examine the genetic underpinnings, emphasizing key heritability studies and specific gene associations. The role of epigenetics is discussed, focusing on how environmental factors can modify gene expression and contribute to these disorders. Neuropeptides, including substance P, CRF, AVP, NPY, galanin, and kisspeptin, are evaluated for their involvement in mood regulation and their potential as therapeutic targets. Additionally, we address the emerging role of the gut microbiome in modulating neuropeptide activity and its connection to mood disorders. This review integrates findings from genetic, epigenetic, and neuropeptide research, offering a comprehensive overview of their collective impact on mood and anxiety disorders. By highlighting novel insights and potential clinical applications, we underscore the importance of a multi-omics approach in developing personalized treatment strategies. Future research directions are proposed to address existing knowledge gaps and translate these findings into clinical practice. Our review provides a fresh perspective on the pathophysiology of mood and anxiety disorders, paving the way for more effective and individualized therapies.
Collapse
Affiliation(s)
- Maryam Gilani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zouein J, Naim N, Spencer DM, Ortel TL. Genetic and genomic associations in antiphospholipid syndrome: A systematic review. Autoimmun Rev 2024; 24:103712. [PMID: 39617250 DOI: 10.1016/j.autrev.2024.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Numerous genes have been associated with APS in the literature. In recent years, microRNA (miRNA) and long non-coding RNA (lncRNA) have also been shown to modulate the expression of APS-related genes. OBJECTIVE We performed a systematic review to identify all studies reporting on genetic mechanisms that have been shown to be associated with APS. METHODS An extensive literature search was performed in the PubMed, Cochrane and Web of Science databases gathering all available articles through February 2024. We only selected case-control studies that met inclusion criteria and that focused on genetic contributors and modifiers related to primary APS. RESULTS Sixty studies were selected for data extraction. Selected studies were grouped into 8 broad categories for review and analysis: (1) gene expression studies; (2) thrombophilia genotypes; (3) single nucleotide polymorphisms (SNPs); (4) interferon-inducible genes; (5) microRNA studies; (6) long non-coding RNA (lncRNA) studies; (7) DNA methylation studies; and (8) differential gene expression studies. Several genes have been identified as associated with APS by more than one approach, including TF, complement associated genes, and interferon-inducible genes. It has been demonstrated that miRNA and lncRNA may alter the expression of important genes in patients with APS. CONCLUSION This systematic review has helped highlight important genes implicated in APS. Most importantly, pathways such as thrombosis/hemostasis, complement and interferon appear to be involved. Further studies are needed to help uncover important genes that could serve as biomarkers.
Collapse
Affiliation(s)
- Joseph Zouein
- Hemostasis and Thrombosis Center, Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Nabih Naim
- Hematology-Oncology Department, Faculty of Medicine, Saint-Joseph University of Beirut, Lebanon
| | - Diane M Spencer
- Hemostasis and Thrombosis Center, Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Thomas L Ortel
- Hemostasis and Thrombosis Center, Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Safdar R, Mishra A, Shah GM, Ashraf MZ. Poly (ADP-ribose) Polymerase-1 modulations in the genesis of thrombosis. J Thromb Thrombolysis 2024; 57:743-753. [PMID: 38787496 DOI: 10.1007/s11239-024-02974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
Thrombosis, a coagulation disorder, occurs due to altered levels of coagulation, fibrinolytic and immune factors, which are otherwise known to maintain hemostasis in normal physiological conditions. Here, we review the direct and indirect participation of a multifunctional nuclear enzyme poly (ADP-ribose) polymerase-1 (PARP1) in the expression of key genes and cellular processes involved in thrombotic pathogenesis. PARP1 biological activities range from maintenance of genomic integrity, chromatin remodeling, base excision DNA repair, stress responses to cell death, angiogenesis and cell cycle pathways. However, under homeostatic imbalances, PARP1 activities are linked with the pathogenesis of diseases, including cancer, aging, neurological disorders, and cardiovascular diseases. Disease-associated distressed cells employ a variety of PARP-1 functions such as oxidative damage exacerbations, cellular energetics and apoptosis pathways, regulation of inflammatory mediators, promotion of endothelial dysfunction, and ERK-mediated signaling in pathogenesis. Thrombosis is one such pathogenesis that comprises exacerbation of coagulation cascade due to biochemical alterations in endothelial cells, platelet activation, overexpression of adhesion molecules, cytokines release, and leukocyte adherence. Thus, the activation of endothelial and inflammatory cells in thrombosis implicates a potential role of PARP1 activation in thrombogenesis. This review article explores the direct impact of PARP1 activation in the etiology of thrombosis and discusses PARP1-mediated endothelial dysfunction, inflammation, and epigenetic regulations in the disease manifestation. Understanding PARP1 functions associated with thrombosis may elucidate novel pathogenetic mechanisms and help in better disease management through newer therapeutic interventions targeting PARP1 activity.
Collapse
Affiliation(s)
- Raishal Safdar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Aastha Mishra
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Girish M Shah
- Neuroscience Division, CHU de Québec Université Laval Research Center, Québec City, QC, G1V 4G2, Canada
| | | |
Collapse
|
5
|
Kohansal K, Afaghi S, Khalili D, Molavizadeh D, Hadaegh F. Gender differences in midlife to later-life cumulative burden and variability of obesity measures and risk of all-cause and cause-specific mortality. Int J Obes (Lond) 2024; 48:495-502. [PMID: 38114811 DOI: 10.1038/s41366-023-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND/OBJECTIVES Previous studies have reported the gender-specific association between general and central obesity measures, using snapshot assessments, and mortality events. This study seeks to further explore this link by examining how the longitudinal cumulative burden and variability of obesity measures from midlife to later-life impact mortality events in the Atherosclerosis Risk in Communities (ARIC) study population, specifically in relation to gender differences. SUBJECTS/METHODS Using data from the ARIC study, a total of 7615 (4360 women) participants free of cardiovascular disease, cancer, and early mortality events were included in the data analysis. Longitudinal cumulative burden (estimated by the area under the curve (AUC) using a quadratic mixed-effects method) and variability (calculated according to average successive variability (ASV)) were considered as exposures, separately and all together. Cox proportional hazard regression models were used to estimate multivariable-adjusted standardized hazard ratios. RESULTS The mean age was 62.4 and the median follow-up was 16.9 years. In men, AUCs of waist-related obesity measures, and also ASVs of all obesity measures were associated with increased all-cause mortality risk. In women, waist circumference and waist-to-height ratio AUCs were associated with increased all-cause mortality risk. Regarding cardiovascular mortality, all adiposity measures ASVs in both genders and waist-related obesity measures AUCs in men were associated with increased risk. Significant gender differences were found for the associations between cumulative and variability of waist-to-hip ratio for all-cause mortality and all adiposity measures ASVs for cardiovascular mortality risk with higher impact among men. CONCLUSIONS Cumulative burden and variability in general and central obesity measures were associated with higher all-cause and cardiovascular mortalities among men. In women, general obesity measures variability, as well as cumulative and variability of central adiposity measure, increased all-cause mortality risk.
Collapse
Affiliation(s)
- Karim Kohansal
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Afaghi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Abak N, Azad M, Ali FM, Saberian M, Turkaman S, Alizadeh S. DNA Methylation Pattern and mRNA Expression Level of E-Cadherin and P16 Genes in Thrombotic Disorders. Clin Appl Thromb Hemost 2024; 30:10760296241300490. [PMID: 39711001 DOI: 10.1177/10760296241300490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE DNA methylation, as an epigenetic alteration, plays an essential role in the development of atherosclerosis and venous thrombosis. E-cadherin, a tumor suppressor gene and adhesion molecule, has a crucial function in platelet aggregation and hemostasis. P16, a cell cycle regulator, is involved in venous thrombosis. The aim of this study is to evaluate the DNA methylation patterns and expression levels of the E-cadherin and P16 genes in venous thromboembolism (VTE). METHOD Peripheral blood samples were collected from 32 patients, including those with deep vein thrombosis (DVT, n = 15), pulmonary embolism (PE, n = 8), DVT with PE (n = 4), intestinal thrombosis (IT, n = 3), and cerebral venous sinus thrombosis (CVST, n = 2), as well as from 10 healthy individuals. The DNA methylation patterns and gene expression levels of E-cadherin and P16 were analyzed using methylation-specific PCR (MSP) and Real-Time PCR, respectively. RESULTS The promoter of the CDH1 gene was partially methylated in 84.4% of thrombotic patients and unmethylated in 15.6% (P = 0.183). A significantly higher expression level of CDH1 was observed in the patients compared to the controls (P = 0.001). The P16 gene promoter were unmethylated in all control and patient specimens. Compared to normal subjects, the expression level of the P16 was significantly increased in patients (P = 0.000). CONCLUSION Our results indicated that DNA methylation is not the main gene expression regulatory mechanism for E-cadherin and P16 genes in thrombosis. Higher transcription levels of CDH1 and P16 in thrombotic patients may show their crucial roles in the pathogenesis of VTE.
Collapse
Affiliation(s)
- Niloofar Abak
- Department of Hematology and Transfusion sciences, School of Allied Medical Sciences, Tehran University of Medical sciences, Tehran, Iran
| | - Mehdi Azad
- Department of Medical laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Mohammad Ali
- Iranian Blood Transfusion Research Center, Hight Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Turkaman
- Mashhad University of Medical Sciences, School of Allied Medical Sciences, Mashhad, Iran
| | - Shaban Alizadeh
- Department of Hematology and Transfusion sciences, School of Allied Medical Sciences, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
7
|
Chen L, Jiang J, Yao J, Lu Y, Zhang X, Zhang M, Zhang Q, Peng H. Association between CORIN promoter methylation and stroke: Results from two independent samples of Chinese adults. Front Neurol 2023; 14:1103374. [PMID: 37064175 PMCID: PMC10102360 DOI: 10.3389/fneur.2023.1103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
ObjectiveAs the physical activator of natriuretic peptides, corin has been associated with stroke, but the underlying mechanism is not very clear. Here, we examined whether the CORIN promoter’s methylation, an epigenetic DNA modification, was associated with the risk of stroke in two independent samples.MethodsA total of 1771 participants including 853 stroke cases and 918 healthy controls were included as a discovery sample and 2,498 community members with 10 years of follow-up were included as a replication sample. DNA methylation of the CORIN promoter was quantified by target bisulfite sequencing in both samples. We first examined the single CpG association, followed by a gene-based analysis of the joint association between multiple CpG methylation and stroke, adjusting for conventional risk factors.ResultsThe single CpG association analysis found that hypermethylation at all of the 9 CpG sites assayed was significantly associated with lower odds of prevalent stroke in the discovery sample (all p < 0.05), and three of them located at Chr4:47840038 (HR = 0.74, p = 0.015), Chr4:47839941 (HR = 0.80, p = 0.047), and Chr4:47839933 (HR = 0.82, p = 0.050) were also significantly associated with incident stroke in the replication sample. The gene-based association analysis found that DNA methylation of the 9 CpG sites at the CORIN promoter was jointly associated with stroke in both samples (all p < 0.05).ConclusionDNA methylation levels of the CORIN gene promoter were lower in stroke patients and predicted a higher risk of incident stroke in Chinese adults. The underlying causality warranted further investigation.
Collapse
Affiliation(s)
- Linan Chen
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jun Jiang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jialing Yao
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Lu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiaolong Zhang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qiu Zhang
- Department of Chronic Disease, Gusu Center for Disease Control and Prevention, Suzhou, China
- *Correspondence: Hao Peng, ; Qiu Zhang,
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
- *Correspondence: Hao Peng, ; Qiu Zhang,
| |
Collapse
|
8
|
Skouras AZ, Antonakis-Karamintzas D, Tsantes AG, Triantafyllou A, Papagiannis G, Tsolakis C, Koulouvaris P. The Acute and Chronic Effects of Resistance and Aerobic Exercise in Hemostatic Balance: A Brief Review. Sports (Basel) 2023; 11:sports11040074. [PMID: 37104148 PMCID: PMC10143125 DOI: 10.3390/sports11040074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Hemostatic balance refers to the dynamic balance between blood clot formation (coagulation), blood clot dissolution (fibrinolysis), anticoagulation, and innate immunity. Although regular habitual exercise may lower the incidence of cardiovascular diseases (CVD) by improving an individual’s hemostatic profile at rest and during exertion, vigorous exercise may increase the risk of sudden cardiac death and venous thromboembolism (VTE). This literature review aims to investigate the hemostatic system’s acute and chronic adaptive responses to different types of exercise in healthy and patient populations. Compared to athletes, sedentary healthy individuals demonstrate similar post-exercise responses in platelet function and coagulatory and fibrinolytic potential. However, hemostatic adaptations of patients with chronic diseases in regular training is a promising field. Despite the increased risk of thrombotic events during an acute bout of vigorous exercise, regular exposure to high-intensity exercise might desensitize exercise-induced platelet aggregation, moderate coagulatory parameters, and up-regulate fibrinolytic potential via increasing tissue plasminogen activator (tPA) and decreasing plasminogen activator inhibitor (PAI-1) response. Future research might focus on combining different types of exercise, manipulating each training characteristic (frequency, intensity, time, and volume), or investigating the minimal exercise dosage required to maintain hemostatic balance, especially in patients with various health conditions.
Collapse
|
9
|
Xu J, Fan Y, Zhou R, Shao J, Guo H, Chen Y, Wang Q, Dong Z, Li M, Chen Y, Wang S, Jiang T, Liu Y, Lin W. The interaction of persistent antiphospholipid antibodies positivity and cigarette smoking is associated with an increased risk of cardiovascular events: Cross-sectional and longitudinal analysis. Int J Cardiol 2023; 374:108-114. [PMID: 36496037 DOI: 10.1016/j.ijcard.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The antiphospholipid antibody (aPL)-positivity was suggested as a nontraditional risk of coronary artery disease (CAD) and it was associated with cigarette smoking. The co-occurrence of them was usually reported in individuals with cardiovascular diseases. This study was to demonstrate their interaction on the increasing risk of cardiovascular events. METHODS AND RESULTS A total of 826 consecutive male individuals who underwent coronary angiography (CAG) /percutaneous coronary intervention (PCI) were prospectively followed and classified into three groups based on different smoking statuses. The current smoking subjects had the highest occurrence of aPL-positivity, including aCL IgM (20.1%) and aβ2GP1 IgM (15.5%). IgM isotype positivity was an independent risk factor of CAD in the multivariate model, OR: 2.70 (1.52-4.80) for aCL IgM and OR:2.50 (1.35-4.63) for aβ2GP1 IgM.The interaction of current smoking and IgM isotype positivity was significantly associated with increased risk of CAD, OR: 8.75(4.59-16.66) for aCL IgM and OR: 8.78(4.28-17.98) for aβ2GP1 IgM. During about 3 years of follow-up, the smoking patients carrying persistent aPL positivity had the highest cumulative incidence of recurrent myocardial infarction and in-stent restenosis after CAD. CONCLUSION The interaction of current smoking and IgM isotype positivity was significantly associated with the increased risk of CAD, including positive aCL IgM and aβ2GP1 IgM. Cigarette smoking elevated the risk of subsequent cardiovascular events in the presence of IgM isotype positivity, including recurrent myocardial infarction and in-stent restenosis.
Collapse
Affiliation(s)
- Jinzhong Xu
- Department of Clinical Pharmacy, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yuncao Fan
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Renfang Zhou
- Department of Clinical Laboratory, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Jianzhi Shao
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Haihui Guo
- Department of Clinical Pharmacy, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yunpeng Chen
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Qizeng Wang
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Zhibing Dong
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Mengjia Li
- Department of Clinical Laboratory, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Ying Chen
- Department of Clinical Laboratory, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Shuangshuang Wang
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Tian Jiang
- Center Laboratory, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenhui Lin
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China.
| |
Collapse
|
10
|
Randhawa PK, Rajakumar A, Futuro de Lima IB, Gupta MK. Eugenol attenuates ischemia-mediated oxidative stress in cardiomyocytes via acetylation of histone at H3K27. Free Radic Biol Med 2023; 194:326-336. [PMID: 36526244 PMCID: PMC10074330 DOI: 10.1016/j.freeradbiomed.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Despite clinical advances, ischemia-induced cardiac diseases remain an underlying cause of death worldwide. Epigenetic modifications, especially alterations in the acetylation of histone proteins play a pivotal role in counteracting stressful conditions, including ischemia. In our study, we found that histone active mark H3K27ac was significantly reduced and histone repressive mark H3K27me3 was significantly upregulated in the cardiomyocytes exposed to the ischemic condition. Then, we performed a high throughput drug screening assay using rat ventricular cardiomyocytes during the ischemic condition and screened an antioxidant compound library comprising of 84 drugs for H3K27ac by fluorescence microscopy. Our data revealed that most of the phenolic compounds like eugenol, apigenin, resveratrol, bis-demethoxy curcumin, D-gamma-tocopherol, ambroxol, and non-phenolic compounds like l-Ergothioneine, ciclopirox ethanolamine, and Tanshinone IIA have a crucial role in maintaining the cellular H3K27ac histone marks during the ischemic condition. Further, we tested the role of eugenol on cellular protection during ischemia. Our study shows that ischemia significantly reduces cellular viability and increases total reactive oxygen species (ROS), and mitochondrial ROS in the cells. Interestingly, eugenol treatment significantly restores the cellular acetylation at H3K27, decreases cellular ROS, and improves cellular viability. To explore the mechanism of eugenol-medicated inhibition of deacetylation, we performed a RNAseq experiment. Analysis of transcriptome data using IPA indicated that eugenol regulates several cellular functions associated with cardiovascular diseases, and metabolic processes. Further, we found that eugenol regulates the expression of HMGN1, CD151 and Ppp2ca genes during ischemia. Furthermore, we found that eugenol might protect the cells from ischemia through modulation of HMGN1 protein expression, which plays an active role in regulation of histone acetylation and cellular protection during stress. Thus, our study indicated that eugenol can be exploited as an agent to protect the ischemic cells and also could be used to develop a novel drug for treating cardiac disease.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Aishwarya Rajakumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Isabela Beatriz Futuro de Lima
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
11
|
Goswami J, MacArthur TA, Mahony C, Kizhakkedathu JN, Vappala S, Smith S, Morrissey JH, Spears GM, Bailey KR, Dong JF, Kozar RA, Hall N, Johnstone A, Park MS. DNASE-MEDIATED DISSOLUTION OF NEUTROPHIL EXTRACELLULAR TRAPS ACCELERATES IN VITRO THROMBIN GENERATION KINETICS IN TRAUMA PATIENTS. Shock 2022; 58:217-223. [PMID: 35959777 PMCID: PMC9810375 DOI: 10.1097/shk.0000000000001972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ABSTRACT Introduction: Neutrophil extracellular traps (NETs) trigger thrombin generation. We aimed to characterize the effects of deoxyribonuclease (DNAse) on NET components (cell-free DNA [cfDNA] and histones) and thrombin generation after trauma. Methods: Citrated plasma samples were collected from trauma patients and healthy volunteers. Thrombin generation (calibrated automated thrombogram) was measured as lag time (LT, in minutes), peak height (in nM), and time to peak thrombin generation (in minutes). Citrullinated histone 3 (CitH3) and 4 (CitH4) were measured by enzyme-linked immunosorbent assay; cfDNA by PicoGreen (all in nanograms per milliliter). Samples analyzed +/- DNAse (1,000 U/mL). Results expressed as median and quartiles [Q1, Q3], Wilcoxon testing, P < 0.05 significant. Results: We enrolled 46 patients (age, 48 [31, 67] years; 67% male) and 21 volunteers (age, 45 [28, 53] years; 43% male). Deoxyribonuclease treatment of trauma plasma led to shorter LT (3.11 [2.67, 3.52] min; 2.93 [2.67, 3.19] min), shorter time to peak thrombin generation (6.00 [5.30, 6.67] min; 5.48 [5.00, 6.00] min), greater peak height (273.7 [230.7, 300.5] nM; 288.7 [257.6, 319.2] nM), decreased cfDNA (576.9 [503.3, 803.1] ng/mL; 456.0 [393.5, 626.7] ng/mL), decreased CitH3 (4.54 [2.23, 10.01] ng/mL; 3.59 [1.93, 7.98] ng/mL), and increased H4 (1.30 [0.64, 6.36] ng/mL; 1.75 [0.83, 9.67] ng/mL), all P < 0.001. The effect of DNAse was greater on trauma patients as compared with volunteers for LT (ΔLT, -0.21 vs. -0.02 min, P = 0.007), cfDNA (ΔcfDNA -133.4 vs. -84.9 ng/mL, P < 0.001), and CitH3 (ΔCitH3, -0.65 vs. -0.11 ng/mL, P = 0.004). Conclusion: Deoxyribonuclease treatment accelerates thrombin generation kinetics in trauma patient samples as compared with healthy volunteers. These findings suggest that NETs may contribute to the hypercoagulable state observed in trauma patients.
Collapse
Affiliation(s)
- Julie Goswami
- Division of Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905
| | - Taleen A. MacArthur
- Division of Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905
| | - Cillian Mahony
- Division of Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 2B5
| | - Sreeparna Vappala
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 2B5
| | - Stephanie Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - Grant M. Spears
- Clinical Statistics and Biostatistics, Department of Health Sciences Research, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905
| | - Kent R. Bailey
- Clinical Statistics and Biostatistics, Department of Health Sciences Research, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905
| | - Jing-Fei Dong
- Division of Hematology, University of Washington School of Medicine, Bloodworks Research Institute, 1551 Eastlake Avenue E, Seattle, WA 98102
| | - Rosemary A. Kozar
- Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St., Baltimore, MD 21201
| | - Nathan Hall
- EpiCypher, Inc. 6 Davis Dr., Durham, NC 27709
| | | | - Myung S. Park
- Division of Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905
- Division of Hematology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905
| |
Collapse
|
12
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Epigenetics-mediated pathological alternations and their potential in antiphospholipid syndrome diagnosis and therapy. Autoimmun Rev 2022; 21:103130. [PMID: 35690246 DOI: 10.1016/j.autrev.2022.103130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease accompanied with venous or arterial thrombosis and poor pregnant manifestations, partly attributing to the successive elevated aPL (antiphospholipid antibodies) and provoked prothrombotic and proinflammatory molecules production. Nowadays, most researches focus on the laboratory detection and clinic features of APS, but its precise etiology remains to be deeply explored. As we all know, the dysfunction of ECs (endothelial cells), monocytes, platelets, trophoblasts and neutrophils are key contributors to APS progression. Especially, their epigenetic variations, mainly including the promoter CpGs methylation, histone PTMs (post-translational modifications) and ncRNAs (noncoding RNAs), result in genes expression or silence engaged in inflammation initiation, thrombosis formation, autoimmune activation and APOs (adverse pregnancy outcomes) in APS. Given the potential of epigenetic markers serving as diagnostic biomarkers or therapeutic targets of APS, and the encouraging advancements in epigenetic drugs are being made. In this review, we would systematically introduce the epigenetic underlying mechanisms for APS progression, comprehensively elucidate the functional mechanisms of epigenetics in boosting ECs, monocytes, platelets, trophoblasts and neutrophils. Lastly, the application of epigenetic alterations for probing novel diagnostic, specific therapeutic and prognostic strategies would be proposed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
13
|
Hahn L, Meister S, Mannewitz M, Beyer S, Corradini S, Hasbargen U, Mahner S, Jeschke U, Kolben T, Burges A. Gal-2 Increases H3K4me3 and H3K9ac in Trophoblasts and Preeclampsia. Biomolecules 2022; 12:biom12050707. [PMID: 35625634 PMCID: PMC9139023 DOI: 10.3390/biom12050707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Preeclampsia (PE) is a severe pregnancy disorder with a pathophysiology not yet completely understood and without curative therapy. The histone modifications H3K4me3 and H3K9ac, as well as galectin-2 (Gal-2), are known to be decreased in PE. To gain a better understanding of the development of PE, the influence of Gal-2 on histone modification in trophoblasts and in syncytialisation was investigated. Immunohistochemical stains of 13 PE and 13 control placentas were correlated, followed by cell culture experiments. An analysis of H3K4me3 and H3K9ac was conducted, as well as cell fusion staining with E-cadherin and β-catenin—both after incubation with Gal-2. The expression of H3K4me3 and H3K9ac correlated significantly with the expression of Gal-2. Furthermore, we detected an increase in H3K4me3 and H3K9ac after the addition of Gal-2 to BeWo/HVT cells. Moreover, there was increased fusion of HVT cells after incubation with Gal-2. Gal-2 is associated with the histone modifications H3K4me3 and H3K9ac in trophoblasts. Furthermore, syncytialisation increased after incubation with Gal-2. Therefore, we postulate that Gal-2 stimulates syncytialisation, possibly mediated by H3K4me3 and H3K9ac. Since Gal-2, as well as H3K4me3 and H3K9ac, are decreased in PE, the induction of Gal-2 might be a promising therapeutic target.
Collapse
Affiliation(s)
- Laura Hahn
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
- Correspondence: ; Tel.: +49-89-440073800
| | - Sarah Meister
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Mareike Mannewitz
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Susanne Beyer
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany;
| | - Uwe Hasbargen
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Sven Mahner
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Udo Jeschke
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
- Department of Gynecology and Obsterics, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Thomas Kolben
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Alexander Burges
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| |
Collapse
|
14
|
Zhang F, Teng D, Tong N, Wang G, Li Y, Yu X, Shan Z, Teng W. Gender-Specific Associations Between Metabolic Disorders and Thyroid Nodules: A Cross-Sectional Population-Based Study from China. Thyroid 2022; 32:571-580. [PMID: 35317620 DOI: 10.1089/thy.2021.0686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Metabolic disorders (MDs) and the metabolic syndrome (MetS) may be associated with thyroid diseases. The aim of this study was to investigate the relationship between MDs and various types of thyroid nodules (TNs), according to gender. Methods: We analyzed cross-sectional data from the Thyroid Disorders, Iodine Status, and Diabetes Epidemiological (TIDE) survey in China. A total of 56,729 subjects ≥18 years of age were included. Thyroid gland morphology was assessed by thyroid standardized ultrasonography. A multivariate logistic regression model was used to explore the odds ratio (OR) and confidence intervals [CIs] for any associations between MDs and TNs. Subgroup analyses were conducted according to gender and TN type (solitary, S-TN; multiple, M-TNs). Results: The prevalence of TNs was increased in several MDs, and was higher in women than men regardless of whether they suffered from MDs (22.0%, CI [21.6-22.5%] vs. 15.7%, CI [15.3-16.7%], p < 0.001). TNs were associated with the presence of MDs (OR = 1.189, CI [1.107-1.278], p < 0.001), hypercholesterolemia (OR = 1.235, CI [1.177-1.296], p < 0.001), high low-density lipoprotein cholesterol (LDL-C; OR = 1.249, CI [1.186-1.316], p < 0.001), and hyperuricemia (OR = 1.206, CI [1.126-1.293], p < 0.001). MDs and MetS were, respectively, significantly associated with TNs, S-TNs, and M-TNs in men, while MDs were significantly associated with the three TN profiles in women. With respect to dyslipidemia, hypercholesterolemia and high LDL-C had the strongest association with TNs, whereas hypertriglyceridemia had no effect. Conclusions: TNs (especially M-TNs) may be associated with MDs and their various components, and there appear to be some gender-specific associations.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Di Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yongze Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Xiaohui Yu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
15
|
Lv L, Ma J, Wu L, Zhang C, Wang Y, Wang G. New Studies of the Aberrant Alterations in Fibrillin-1 Methylation During Colorectal Cancer Development. Front Oncol 2022; 12:862887. [PMID: 35515111 PMCID: PMC9067271 DOI: 10.3389/fonc.2022.862887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Fibrillin-1 (FBN1) methylation risk from control to colorectal cancer (CRC), the variation regularities of FBN1 methylation, and DNA methyltransferase (DNMT) catalyzed with FBN1 methylation had not been reported yet; these were all studied in this paper. Methods FBN1 methylation roles were investigated with big data and meta-analysis. Results The 6 independent studies were searched including 702 tissue and 448 feces. FBN1 methylation frequencies of CRC, adenoma or polyp, and control in tissue were 79.1%, 69.4%, and 2.7%, respectively; those in feces were 74.6%, 50.7%, and 10.8%, respectively. FBN1 methylation of control samples was used as a standard reference; this study showed that ORs (95% CI) of FBN1 methylation in CRC and control tissues were 124.79 (62.86-248.35); those in feces were detected to be 30.87 (16.48-57.85). FBN1 methylation risk in tissue was higher than that in feces; there was a quadratic equation between the methylation rate of tissue and that of feces. There was another quadratic curve in the variation process of FBN1 methylation; this curve reflected the overall metabolism regularity of DNMT. Conclusions The transcriptional inactivation of FBN1 gene might start from normal colonic epithelium; the quadratic curve of FBN1 methylation catalyzed by DNMT can gradually produce powerful strength, accelerate expansion, and eventually lead to CRC. The overall metabolism regularity of DNMT maintains the changing process of FBN1 methylation; it has the changing feature of the same quadratic curve. FBN1 methylation is a promising biomarker. FBN1 methylation risk size in feces reflects that in tissue in non-invasive detection.
Collapse
Affiliation(s)
- Ling Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianzhong Ma
- School of Business, Xianda College of Economics & Humanities, Shanghai International Studies University, Shanghai, China
| | - Lina Wu
- Department of Medical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Zhang
- School of Business, Xianda College of Economics & Humanities, Shanghai International Studies University, Shanghai, China
| | - Yueping Wang
- Department of Infection Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guang Wang
- Hepatobiliary Surgery Department, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Ma X. Preclinical Evidence of Paeoniflorin Effectiveness for the Management of Cerebral Ischemia/Reperfusion Injury: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:827770. [PMID: 35462929 PMCID: PMC9032804 DOI: 10.3389/fphar.2022.827770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Vessel recanalization is the main treatment for ischemic stroke; however, not all patients benefit from it. This lack of treatment benefit is related to the accompanying ischemia-reperfusion (I/R) injury. Therefore, neuroprotective therapy for I/R Injury needs to be further studied. Paeonia lactiflora Pall. is a commonly used for ischemic stroke management in traditional Chinese medicine; its main active ingredient is paeoniflorin (PF). We aimed to determine the PF’s effects and the underlying mechanisms in instances of cerebral I/R injury.Methods: We searched seven databases from their inception to July 2021.SYRCLE’s risk of bias tool was used to assess methodological quality. Review Manager 5.3 and STATA 12.0 software were used for meta-analysis.Results: Thirteen studies, including 282 animals overall, were selected. The meta-analyses showed compared to control treatment, PF significantly reduced neurological severity scores, cerebral infarction size, and brain water content (p = 0.000). In the PF treatment groups, the apoptosis cells and levels of inflammatory factors (IL-1β) decreased compared to those in the control groups (p = 0.000).Conclusion: Our results suggest that PF is a promising therapeutic for cerebral I/R injury management. However, to evaluate the effects and safety of PF in a more accurate manner, additional preclinical studies are necessary.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma,
| |
Collapse
|
17
|
Tektonidou MG. Cardiovascular disease risk in antiphospholipid syndrome: Thrombo-inflammation and atherothrombosis. J Autoimmun 2022; 128:102813. [PMID: 35247655 DOI: 10.1016/j.jaut.2022.102813] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by the presence of antiphospholipid antibodies (aPL) (lupus anticoagulant, anticardiolipin antibodies and anti-beta2glycoprotein I (anti-β2GPI) antibodies) and a plethora of macro- and micro-vascular manifestations, affecting predominantly young adults. Cardiovascular events are the leading causes of morbidity and mortality in APS. APL-mediated thrombo-inflammation and atherothrombosis are emerging pathogenetic mechanisms of cardiovascular disease (CVD) in APS, involving endothelial cell and monocyte activation, cytokines and adhesion molecules expression, complement and neutrophils activation, neutrophil extracellular traps formation, platelet cell activation and aggregation, and subsequent thrombin generation, in parallel with an oxidized low-density lipoprotein (oxLDL)-β2GPI complex induced macrophage differentiation to foam cells. High risk aPL profile, especially the presence of lupus anticoagulant and triple aPL positivity (all three aPL subtypes), co-existence with Systemic Lupus Erythematosus (SLE), as well as traditional risk factors such as smoking, hypertension, hyperlipemia and obesity are associated with both subclinical atherosclerosis and cardiovascular events in APS. Increased awareness of CVD risk by the physicians and patients, regular assessment and strict control of traditional risk factors, and lifestyle modifications are recommended. Use of low-dose aspirin should be considered for cardiovascular prevention in asymptomatic aPL carriers or SLE patients with high-risk aPL profile. The role of older agents such as hydroxychloroquine and statins or new potential targeted treatments against immuno- and athero-thrombosis has been demonstrated by experimental and some clinical studies and needs to be further evaluated by randomized controlled studies. This review summarizes the available evidence about the pathogenetic mechanisms and prevalence of cardiovascular events and subclinical atherosclerosis, the interrelationship between traditional and disease-related CVD risk factors, and the cardiovascular risk assessment and management in APS.
Collapse
Affiliation(s)
- Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| |
Collapse
|
18
|
Liu H, Yang J, Li Y, Ma Y, Wang W, Zhong W, Li P, Du S. A Novel Fibrinolytic Protein From Pheretima vulgaris: Purification, Identification, Antithrombotic Evaluation, and Mechanisms Investigation. Front Mol Biosci 2022; 8:772419. [PMID: 35141276 PMCID: PMC8819685 DOI: 10.3389/fmolb.2021.772419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Thrombotic diseases have been considered major causes of death around the world. Treatments with thrombolytic drugs, such as recombinant tissue-plasminogen activator, urokinase, and streptokinase, are reported to have a life-threatening bleeding tendency. On the contrary, lumbrokinase, identified from Lumbricus rubellus, is specific to fibrin and does not cause excessive bleeding. It possesses fibrinolytic activity and activation of plasminogen to dissolve fibrin. Hence, the purification of fibrinolytic protein monomer from earthworm and antithrombotic evaluation and investigation of mechanisms are needed. In this study, a novel fibrinolytic protein EPF3, with strong fibrinolytic activity, was purified from Pheretima vulgaris by ion exchange and size exclusion chromatography. SDS PAGE, bottom-up proteomics analysis, de novo sequencing, and circular dichroism (CD) analysis were carried out for identification and characterization of it. EPF3, with a molecular weight of 25136.24 Da, consisted of 241 amino acids and contained various forms of secondary structures, including α-helix (3.9%), β-sheet (42.8%), β-turn (21.2%), and random coil (32.1%). It was a trypsin-like serine protease and stable at pH 7.0 to 11.0 and below 40°C. EPF3 was confirmed to possess an antithrombotic effect by ex vivo clot lysis test and fibrinogen-thrombin time (Fib-TT) assay. The three-dimensional structure of EPF3 was predicted by SWISS-MODEL. Molecular docking analysis predicted that EPF3 could directly interact with antithrombotic target proteins (fibrin, fibrinogen, and plasminogen), which was further confirmed by further studies. The antithrombotic mechanism of EPF3 was clarified to be outstanding direct fibrinolysis, fibrinogenolytic activity, and certain activation of plasminogen. EPF3 possesses the potential to be developed into a promising antithrombotic agent.
Collapse
Affiliation(s)
- Hai Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yamei Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjie Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Pengyue Li, ; Shouying Du,
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Pengyue Li, ; Shouying Du,
| |
Collapse
|
19
|
Particulate Matter-Induced Acute Coronary Syndrome: MicroRNAs as Microregulators for Inflammatory Factors. Mediators Inflamm 2021; 2021:6609143. [PMID: 34931116 PMCID: PMC8684514 DOI: 10.1155/2021/6609143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
The most prevalent cause of mortality and morbidity worldwide is acute coronary syndrome (ACS) and its consequences. Exposure to particulate matter (PM) from air pollution has been shown to impair both. Various plausible pathogenic mechanisms have been identified, including microRNAs (miRNAs), an epigenetic regulator for gene expression. Endogenous miRNAs, average 22-nucleotide RNAs (ribonucleic acid), regulate gene expression through mRNA cleavage or translation repression and can influence proinflammatory gene expression posttranscriptionally. However, little is known about miRNA responses to fine PM (PM2.5, PM10, ultrafine particles, black carbon, and polycyclic aromatic hydrocarbon) from air pollution and their potential contribution to cardiovascular consequences, including systemic inflammation regulation. For the past decades, microRNAs (miRNAs) have emerged as novel, prospective diagnostic and prognostic biomarkers in various illnesses, including ACS. We wanted to outline some of the most important studies in the field and address the possible utility of miRNAs in regulating particulate matter-induced ACS (PMIA) on inflammatory factors in this review.
Collapse
|
20
|
Meister S, Kellner I, Beyer S, Corradini S, Schulz C, Rogenhofer N, Keilmann L, Kolben TM, Mahner S, Kessler M, Jeschke U, Kolben T. Epigenetic changes occur in placentas of spontaneous and recurrent miscarriages. J Reprod Immunol 2021; 149:103466. [PMID: 34929495 DOI: 10.1016/j.jri.2021.103466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/18/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND In contrast to genetic abnormalities which are well known to be responsible for around 50 % of human miscarriages, there is very few data about epigenetic alterations in spontaneous and recurrent miscarriages (SM, RM). The aim of this study was to analyze the histone modification marks H3K9ac and H3K4me3 in SM and RM. METHODS The abundance of histone modifications H3K4me3/H3K9ac was analyzed by western blot in frozen abortion material of SM and RM compared to a control group of legal pregnancy terminations. Further, to characterize placental tissue cells expressing H3K4me3/H3K9ac immunohistochemistry (IHC) and immunofluorescence was performed in 20 SM, 19 RM and 26 controls. RESULTS The western blot data showed a tendency to an overall reduction of H3K4me3/H3K9ac, in the placental tissue of particularly SM. Further we differentiated between syncytiotrophoblast, cytotrophoblast and decidual cells and found a significant decrease of H3K4me3 in SM in cytotrophoblast cells and syncytial stroma. In RM H3K4me3 was downregulated exclusively in the syncytiotrophoblast. H3K9ac was reduced in SM and RM in all evaluated compartments, except from the syncytiotrophoblast. CONCLUSION Our study showed an overall reduced histone modification of H3K4me3 and H3K9ac in the placental tissue of SM. Concerning RM, particularly the reduction of H3K9ac was detected in the placental tissue, indicating that RM group has distinct profile in epigenetic regulation. Whether these histone modifications are part of a possible pathophysiologic cascade during SM and RM or are merely indicating a defective placentation, cannot be concluded from this study.
Collapse
Affiliation(s)
- Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Isabel Kellner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Nina Rogenhofer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lucia Keilmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Gynecology and Obstetrics, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
21
|
Heireman L, Vantilborgh A, Devreese K. Variability in the Presence of Clinical Manifestations Associated With Antiphospholipid Syndrome in a HLA-DR4-, HLA-DR7-, and HLA-DQ8-Positive Family. J Clin Rheumatol 2021; 27:S392-S393. [PMID: 32649400 DOI: 10.1097/rhu.0000000000001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Xu W, Liu X, Huang Z, Du Y, Zhang B, Wang Q, Xiang J, Zou Y, Ma L. Acute Effects of Air Pollution on Ischemic Heart Disease Hospitalizations: A Population-Based Time-Series Study in Wuhan, China, 2017-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12527. [PMID: 34886253 PMCID: PMC8656788 DOI: 10.3390/ijerph182312527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
Evidence of the acute effects of air pollutants on ischemic heart disease (IHD) hospitalizations based on the entire population of a megacity in central China is lacking. All IHD hospitalization records from 2017 to 2018 were obtained from the Wuhan Information Center of Health and Family Planning. Daily air pollutant concentrations and meteorological data were synchronously collected from the Wuhan Environmental Protection Bureau. A time-series study using generalized additive models was conducted to systematically examine the associations between air pollutants and IHD hospitalizations. Stratified analyses by gender, age, season, hypertension, diabetes, and hyperlipidemia were performed. In total, 139,616 IHD hospitalizations were included. Short-term exposure to air pollutants was positively associated with IHD hospitalizations. The age group ≥76 was at higher exposure risk, and the associations appeared to be more evident in cold seasons. PM2.5 and PM10 appeared to have greater effects on males and those without hypertension or diabetes, whereas NO2 and SO2 had greater effects on females and those with hypertension or diabetes. The risk of IHD hospitalization due to air pollutants was greater in people without hyperlipidemia. Our study provides new evidence of the effects of air pollution on the increased incidence of IHD in central China.
Collapse
Affiliation(s)
- Wanglin Xu
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Xingyuan Liu
- Information Center of Health and Family Planning, Wuhan 430021, China;
| | - Zenghui Huang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Yating Du
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Biao Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Qiaomai Wang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Jing Xiang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Yuliang Zou
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Lu Ma
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| |
Collapse
|
23
|
Meister S, Hahn L, Beyer S, Paul C, Mitter S, Kuhn C, von Schönfeldt V, Corradini S, Sudan K, Schulz C, Kolben TM, Mahner S, Jeschke U, Kolben T. Regulation of Epigenetic Modifications in the Placenta during Preeclampsia: PPARγ Influences H3K4me3 and H3K9ac in Extravillous Trophoblast Cells. Int J Mol Sci 2021; 22:ijms222212469. [PMID: 34830351 PMCID: PMC8622744 DOI: 10.3390/ijms222212469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to analyze the expression of peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RxRα), a binding heterodimer playing a pivotal role in the successful trophoblast invasion, in the placental tissue of preeclamptic patients. Furthermore, we aimed to characterize a possible interaction between PPARγ and H3K4me3 (trimethylated lysine 4 of the histone H3), respectively H3K9ac (acetylated lysine 9 of the histone H3), to illuminate the role of histone modifications in a defective trophoblast invasion in preeclampsia (PE). Therefore, the expression of PPARγ and RxRα was analyzed in 26 PE and 25 control placentas by immunohistochemical peroxidase staining, as well as the co-expression with H3K4me3 and H3K9ac by double immunofluorescence staining. Further, the effect of a specific PPARγ-agonist (Ciglitazone) and PPARγ-antagonist (T0070907) on the histone modifications H3K9ac and H3K4me3 was analyzed in vitro. In PE placentas, we found a reduced expression of PPARγ and RxRα and a reduced co-expression with H3K4me3 and H3K9ac in the extravillous trophoblast (EVT). Furthermore, with the PPARγ-antagonist treated human villous trophoblast (HVT) cells and primary isolated EVT cells showed higher levels of the histone modification proteins whereas treatment with the PPARγ-agonist reduced respective histone modifications. Our results show that the stimulation of PPARγ-activity leads to a reduction of H3K4me3 and H3K9ac in trophoblast cells, but paradoxically decreases the nuclear PPARγ expression. As the importance of PPARγ, being involved in a successful trophoblast invasion has already been investigated, our results reveal a pathophysiologic connection between PPARγ and the epigenetic modulation via H3K4me3 and H3K9ac in PE.
Collapse
Affiliation(s)
- Sarah Meister
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
- Correspondence: (S.M.); (U.J.); Tel.: +49-89-4400-54266 (S.M.); Fax: +49-89-4400-54916 (S.M.)
| | - Laura Hahn
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| | - Susanne Beyer
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| | - Corinna Paul
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| | - Sophie Mitter
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| | - Christina Kuhn
- Department of Gynecology and Obstetrics, University Hospital Augsburg, 86156 Augsburg, Germany;
| | - Viktoria von Schönfeldt
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany;
| | - Kritika Sudan
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (K.S.); (C.S.)
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (K.S.); (C.S.)
| | - Theresa Maria Kolben
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| | - Sven Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| | - Udo Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
- Department of Gynecology and Obstetrics, University Hospital Augsburg, 86156 Augsburg, Germany;
- Correspondence: (S.M.); (U.J.); Tel.: +49-89-4400-54266 (S.M.); Fax: +49-89-4400-54916 (S.M.)
| | - Thomas Kolben
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.); (S.B.); (C.P.); (S.M.); (V.v.S.); (T.M.K.); (S.M.); (T.K.)
| |
Collapse
|
24
|
Liu Q, Li H, Guo L, Chen Q, Gao X, Li PH, Tang N, Guo X, Deng F, Wu S. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125963. [PMID: 33984786 DOI: 10.1016/j.jhazmat.2021.125963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The potential effect of short-term exposure to air pollution on mitochondrial DNA (mtDNA) methylation remains to be explored. This study adopted an experimental exposure protocol nested with an intervention study on L-arginine (L-Arg) supplementation among 118 participants. Participants walked along a traffic road for 2 hours in the last day of a 14-day intervention to investigate the effects of short-term personal exposure to air pollution on platelet mtDNA methylation and the possible modifying effects of L-Arg supplementation. Results showed that short-term personal exposure to air pollutants was associated with hypomethylation in platelet mtDNA in 110 participants who completed the study protocol. Specifically, 2-h fine particulate matter (PM2.5) exposure during the outdoor walk was significantly associated with hypomethylation in mt12sRNA; 24-h PM2.5 and black carbon (BC) exposures from the start of the walk till next morning were both significantly associated with hypomethylation in the D-loop region; 24-h BC exposure was also significantly associated with hypomethylation in ATP8_P1. Supplementation with L-Arg could mitigate the air pollution effects on platelet mtDNA methylation, especially the D-loop region. These findings suggest that platelet mtDNA methylation may be sensitive effect biomarker for short-term exposure to air pollution and may help deepen the understanding of the epigenetic mechanisms of adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qiao Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
25
|
Tawil N, Spinelli C, Bassawon R, Rak J. Genetic and epigenetic regulation of cancer coagulome - lessons from heterogeneity of cancer cell populations. Thromb Res 2021; 191 Suppl 1:S99-S105. [PMID: 32736787 DOI: 10.1016/s0049-3848(20)30405-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/15/2022]
Abstract
Cancer-associated thrombosis (CAT) is a morbid, potentially life threatening and biologically impactful paraneoplastic state. At least in part, CAT is likely driven by cancer-specific mechanisms the nature of which is still poorly understood, hampering diagnostic, prophylactic and therapeutic efforts. It is increasingly appreciated that cancer-specific drivers of CAT include a constellation of oncogenic mutations and their superimposed epigenetic states that shape the transcriptome, phenotype and secretome of cancer cell populations, including the repertoire of genes impacting the vascular and coagulation systems. High-grade brain tumours, such as glioblastoma multiforme (GBM) represent a paradigm of locally initiated haemostatic abnormalities that propagate systemically, likely through circulating mediators, such as extracellular vesicles and soluble factors. Reciprocally, CAT impacts the biology of cancer cells and may drive tumour evolution. The constituent, oncogene-transformed cancer cell populations form complex ecosystems, the intricate architecture of which has been recently revealed by single cell sequencing technologies. Amidst this phenotypic heterogeneity, several alternative pathways of CAT may exist both between and within individual tumours and their subtypes, including GBM. Indeed, different contributions of cells expressing key coagulant mediators, such as tissue factor, or podoplanin, have been identified in GBM subtypes driven by oncogenic mutations in EGFR, IDH1 and other transforming genes. Thus, a better understanding of cellular sources of CAT, including dominant cancer cell phenotypes and their dynamic shifts, may help design more personalised approaches to thrombosis in cancer patients to improve outcomes.
Collapse
Affiliation(s)
- Nadim Tawil
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Cristiana Spinelli
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Rayhaan Bassawon
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Meister S, Hahn L, Beyer S, Kuhn C, Jegen M, von Schönfeldt V, Corradini S, Schulz C, Kolben TM, Hester A, Appelt T, Mahner S, Jeschke U, Kolben T. Epigenetic modification via H3K4me3 and H3K9ac in human placenta is reduced in preeclampsia. J Reprod Immunol 2021; 145:103287. [PMID: 33662848 DOI: 10.1016/j.jri.2021.103287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
BACKROUND Alterations of DNA accessibility and chromatin structure are associated with diseases. We aimed to investigate epigenetic modifications in preeclampsia (PE), a pregnancy-associated hypertonic disease. Specifically, we addressed histone modification proteins H3K9ac (acetylated lysine 9 of the histone H3) and H3K4me3 (trimethylated lysine 4 of the histone H3) in PE. METHODS We analyzed expression of histone proteins H3K4me3 and H3K9ac in 32 PE and 32 control placentas by immunohistochemistry. Further, we carried out confirmatory western blot analysis of respective proteins in 6 representative placentas. We then applied regression models with additional adjustment for potential confounders. RESULTS Expression of H3K4me3 and H3K9ac is reduced in PE placentas as demonstrated by immunohistochemical stainings and western blot. There are no differences between female and male fetuses in the presence of these histone modifications. H3K4me3 positively correlated with maternal age (r = 0.444, p = 0.034). CONCLUSION Expression of the placental histone proteins H3K4me3 and H3K9ac is reduced in PE, and independent of fetal gender. Our study underlines the involvement of epigenetic changes in the placenta of women suffering from PE.
Collapse
Affiliation(s)
- Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Laura Hahn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Magdalena Jegen
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU, Munich, Marchioninistr. 15, 81377, Germany.
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Tamara Appelt
- Department of General and Visceral Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Gynecology and Obstetrics, University Hospital Augsburg, 86156, Augsburg, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
27
|
Abstract
Epigenetic mechanisms involve the placing (writing) or removal (erasing) of histone modifications that allow heterochromatin to transition to the open, activated euchromatin state necessary for transcription. A third, less studied epigenetic pathway involves the reading of these specific histone marks once placed. The BETs (bromodomain and extraterminal-containing protein family), which includes BRD2, BRD3, and BRD4 and the testis-restricted BRDT, are epigenetic reader proteins that bind to specific acetylated lysine residues on histone tails where they facilitate the assembly of transcription complexes including transcription factors and transcriptional machinery like RNA Polymerase II. As reviewed here, considerable recent data establishes BETs as novel determinants of induced transcriptional programs in vascular cells, like endothelial cells and vascular smooth muscle cells, cardiac myocytes and inflammatory cells, like monocyte/macrophages, cellular settings where these epigenetic reader proteins couple proximal stimuli to chromatin, acting at super-enhancer regulatory regions to direct gene expression. BET inhibition, including the use of specific chemical BET inhibitors like JQ-1, has many reported effects in vivo in the cardiovascular setting, like decreasing atherosclerosis, angiogenesis, intimal hyperplasia, pulmonary arterial hypertension, and cardiac hypertrophy. At the same time, data in endothelial cells, adipocytes, and elsewhere suggest BETs also help regulate gene expression under basal conditions. Studies in the cardiovascular setting have highlighted BET action as a means of controlling gene expression in differentiation, cell identity, and cell state transitions, whether physiological or pathological, adaptive, or maladaptive. While distinct BET inhibitors are being pursued as therapies in oncology, a large prospective clinical cardiovascular outcome study investigating the BET inhibitor RVX-208 (now called apabetalone) has already been completed. Independent of this specific agent and this one trial or the numerous unanswered questions that remain, BETs have emerged as novel epigenetic players involved in the execution of coordinated transcriptional programs in cardiovascular health and disease.
Collapse
Affiliation(s)
- Patricia Cristine Borck
- From the Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.C.B., J.P.)
| | - Lian-Wang Guo
- Davis Heart and Lung Institute, Wexner Medical Center, Ohio State University, Columbus (L.-W.G.)
| | - Jorge Plutzky
- From the Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.C.B., J.P.)
| |
Collapse
|
28
|
Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM, Luque-Tévar M, Torres-Granados C, Aguirre-Zamorano MA, Collantes-Estevez E, Pérez-Sánchez C. Role of microRNAs in the Development of Cardiovascular Disease in Systemic Autoimmune Disorders. Int J Mol Sci 2020; 21:E2012. [PMID: 32188016 PMCID: PMC7139533 DOI: 10.3390/ijms21062012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid Arthritis (RA), Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are the systemic autoimmune diseases (SADs) most associated with an increased risk of developing cardiovascular (CV) events. Cardiovascular disease (CVD) in SADs results from a complex interaction between traditional CV-risk factors, immune deregulation and disease activity. Oxidative stress, dyslipidemia, endothelial dysfunction, inflammatory/prothrombotic mediators (cytokines/chemokines, adipokines, proteases, adhesion-receptors, NETosis-derived-products, and intracellular-signaling molecules) have been implicated in these vascular pathologies. Genetic and genomic analyses further allowed the identification of signatures explaining the pro-atherothrombotic profiles in RA, SLE and APS. However, gene modulation has left significant gaps in our understanding of CV co-morbidities in SADs. MicroRNAs (miRNAs) are emerging as key post-transcriptional regulators of a suite of signaling pathways and pathophysiological effects. Abnormalities in high number of miRNA and their associated functions have been described in several SADs, suggesting their involvement in the development of atherosclerosis and thrombosis in the setting of RA, SLE and APS. This review focusses on recent insights into the potential role of miRNAs both, as clinical biomarkers of atherosclerosis and thrombosis in SADs, and as therapeutic targets in the regulation of the most influential processes that govern those disorders, highlighting the potential diagnostic and therapeutic properties of miRNAs in the management of CVD.
Collapse
|
29
|
The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol 2020; 81:106262. [PMID: 32045873 DOI: 10.1016/j.intimp.2020.106262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.
Collapse
|