1
|
Jansen DTSL, Nikolic T, den Hollander NHM, Zwaginga JJ, Roep BO. Bridging the Gap Between Tolerogenic Dendritic Cells In Vitro and In Vivo: Analysis of Siglec Genes and Pathways Associated with Immune Modulation and Evasion. Genes (Basel) 2024; 15:1427. [PMID: 39596627 PMCID: PMC11593460 DOI: 10.3390/genes15111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in the context of autoimmunity. We successfully generated tolDCs in vitro to durably restore immune tolerance to an islet autoantigen in type 1 diabetes patients in a clinical trial. However, cancers can induce inhibitory DCs in vivo that impair anti-tumor immunity through Siglec signaling. METHODS To connect in vivo and in vitro tolDC properties, we tested whether tolDCs generated in vitro may also employ the Siglec pathway to regulate autoimmunity by comparing the transcriptomes and protein expression of immature and mature inflamDCs and tolDCs, generated from monocytes. RESULTS Both immature DC types expressed most Siglec genes. The expression of these genes declined significantly in mature inflamDCs compared to mature tolDCs. Surface expression of Siglec proteins by DCs followed the same pattern. The majority of genes involved in the different Siglec pathways were differentially expressed by mature tolDCs, as opposed to inflamDCs, and in inhibitory pathways in particular. CONCLUSIONS Our results show that tolDCs generated in vitro mimic tumor-resident inhibitory DCs in vivo regarding Siglec expression.
Collapse
Affiliation(s)
| | | | | | | | - Bart O. Roep
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.T.S.L.J.); (T.N.); (J.J.Z.)
| |
Collapse
|
2
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
3
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Zhang Y, Sun H, Lian X, Tang J, Zhu F. ANPELA: Significantly Enhanced Quantification Tool for Cytometry-Based Single-Cell Proteomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207061. [PMID: 36950745 DOI: 10.1002/advs.202207061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Indexed: 05/27/2023]
Abstract
ANPELA is widely used for quantifying traditional bulk proteomic data. Recently, there is a clear shift from bulk proteomics to the single-cell ones (SCP), for which powerful cytometry techniques demonstrate the fantastic capacity of capturing cellular heterogeneity that is completely overlooked by traditional bulk profiling. However, the in-depth and high-quality quantification of SCP data is still challenging and severely affected by the large numbers of quantification workflows and extreme performance dependence on the studied datasets. In other words, the proper selection of well-performing workflow(s) for any studied dataset is elusory, and it is urgently needed to have a significantly enhanced and accelerated tool to address this issue. However, no such tool is developed yet. Herein, ANPELA is therefore updated to its 2.0 version (https://idrblab.org/anpela/), which is unique in providing the most comprehensive set of quantification alternatives (>1000 workflows) among all existing tools, enabling systematic performance evaluation from multiple perspectives based on machine learning, and identifying the optimal workflow(s) using overall performance ranking together with the parallel computation. Extensive validation on different benchmark datasets and representative application scenarios suggest the great application potential of ANPELA in current SCP research for gaining more accurate and reliable biological insights.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jing Tang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| |
Collapse
|
5
|
Nikolic T, Suwandi JS, Wesselius J, Laban S, Joosten AM, Sonneveld P, Mul D, Aanstoot HJ, Kaddis JS, Zwaginga JJ, Roep BO. Tolerogenic dendritic cells pulsed with islet antigen induce long-term reduction in T-cell autoreactivity in type 1 diabetes patients. Front Immunol 2022; 13:1054968. [PMID: 36505460 PMCID: PMC9728525 DOI: 10.3389/fimmu.2022.1054968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Restoration of immune tolerance may halt progression of autoimmune diseases. Tolerogenic dendritic cells (tolDC) inhibit antigen-specific proinflammatory T-cells, generate antigen-specific regulatory T-cells and promote IL-10 production in-vitro, providing an appealing immunotherapy to intervene in autoimmune disease progression. Methods A placebo-controlled, dose escalation phase 1 clinical trial in nine adult patients with long-standing type 1 diabetes (T1D) demonstrated the safety and feasibility of two (prime-boost) vaccinations with tolDC pulsed with a proinsulin peptide. Immunoregulatory effects were monitored by antigen-specific T-cell assays and flow and mass cytometry. Results The tolDC vaccine induced a profound and durable decline in pre-existing autoimmune responses to the vaccine peptide up to 3 years after therapy and temporary decline in CD4 and CD8+ T-cell responses to other islet autoantigens. While major leukocyte subsets remained stable, ICOS+CCR4+TIGIT+ Tregs and CD103+ tissue-resident and CCR6+ effector memory CD4+ T-cells increased in response to the first tolDC injection, the latter declining thereafter below baseline levels. Discussion Our data identify immune correlates of mechanistic efficacy of intradermally injected tolDC reducing proinsulin autoimmunity in T1D.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jessica S. Suwandi
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Joris Wesselius
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sandra Laban
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Antoinette M. Joosten
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Petra Sonneveld
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Dick Mul
- Diabeter Nederland, Diabetes Center, Rotterdam, Netherlands
| | | | - John S. Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute at the Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Jaap Jan Zwaginga
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O. Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Bart O. Roep,
| |
Collapse
|
6
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. Current advances in using tolerogenic dendritic cells as a therapeutic alternative in the treatment of type 1 diabetes. World J Diabetes 2021; 12:603-615. [PMID: 33995848 PMCID: PMC8107985 DOI: 10.4239/wjd.v12.i5.603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells of the pancreatic islets by autoreactive T cells, leading to high blood glucose levels and severe long-term complications. The typical treatment indicated in T1D is exogenous insulin administration, which controls glucose levels; however, it does not stop the autoimmune process. Various strategies have been implemented aimed at stopping β-cell destruction, such as cellular therapy. Dendritic cells (DCs) as an alternative in cellular therapy have gained great interest for autoimmune disease therapy due to their plasticity to acquire immunoregulatory properties both in vivo and in vitro, performing functions such as anti-inflammatory cytokine secretion and suppression of autoreactive lymphocytes, which are dependent of their tolerogenic phenotype, displayed by features such as semimature phenotype, low surface expression of stimulatory molecules to prime T cells, as well as the elevated expression of inhibitory markers. DCs may be obtained and propagated easily in optimal amounts from peripheral blood or bone marrow precursors, such as monocytes or hematopoietic stem cells, respectively; therefore, various protocols have been established for tolerogenic (tol)DCs manufacturing for therapeutic research in the treatment of T1D. In this review, we address the current advances in the use of tolDCs for T1D therapy, encompassing protocols for their manufacturing, the data obtained from preclinical studies carried out, and the status of clinical research evaluating the safety, feasibility, and effectiveness of tolDCs.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Honorio Torres-Aguilar
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
7
|
Rahman AH, Homann D. Mass cytometry and type 1 diabetes research in the age of single-cell data science. Curr Opin Endocrinol Diabetes Obes 2020; 27:231-239. [PMID: 32618635 PMCID: PMC7596883 DOI: 10.1097/med.0000000000000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW New single-cell tec. hnologies developed over the past decade have considerably reshaped the biomedical research landscape, and more recently have found their way into studies probing the pathogenesis of type 1 diabetes (T1D). In this context, the emergence of mass cytometry in 2009 revolutionized immunological research in two fundamental ways that also affect the T1D world: first, its ready embrace by the community and rapid dissemination across academic and private science centers alike established a new standard of analytical complexity for the high-dimensional proteomic stratification of single-cell populations; and second, the somewhat unexpected arrival of mass cytometry awoke the flow cytometry field from its seeming sleeping beauty stupor and precipitated substantial technological advances that by now approach a degree of analytical dimensionality comparable to mass cytometry. RECENT FINDINGS Here, we summarize in detail how mass cytometry has thus far been harnessed for the pursuit of discovery studies in T1D science; we provide a succinct overview of other single-cell analysis platforms that already have been or soon will be integrated into various T1D investigations; and we briefly consider how effective adoption of these technologies requires an adjusted model for expense allocation, prioritization of experimental questions, division of labor, and recognition of scientific contributions. SUMMARY The introduction of contemporary single-cell technologies in general, and of mass cytometry, in particular, provides important new opportunities for current and future T1D research; the necessary reconfiguration of research strategies to accommodate implementation of these technologies, however, may both broaden research endeavors by fostering genuine team science, and constrain their actual practice because of the need for considerable investments into infrastructure and technical expertise.
Collapse
Affiliation(s)
| | - Dirk Homann
- Precision Immunology Institute
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|