1
|
Azizi G, Van den Broek B, Ishikawa LLW, Naziri H, Yazdani R, Zhang GX, Ciric B, Rostami A. IL-7Rα on CD4 + T cells is required for their survival and the pathogenesis of experimental autoimmune encephalomyelitis. J Neuroinflammation 2024; 21:253. [PMID: 39380064 PMCID: PMC11460225 DOI: 10.1186/s12974-024-03224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The IL-7 receptor alpha (IL-7Rα) binds both IL-7 and thymic stromal lymphopoietin (TSLP). IL-7Rα is essential for the development and survival of naive CD4+ T cells and their differentiation to effector/memory CD4+ T cells. Mice lacking IL-7Rα have severe lymphopenia and are resistant to experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. However, it has been reported that IL-7Rα on peripheral CD4+ T cells is disposable for their maintenance and EAE pathogenesis, which does not align with the body of knowledge on the role of IL-7Rα in the biology of CD4+ T cells. Given that a definitive study on this important topic is lacking, we revisited it using a novel approach, an inducible knockout of the IL-7Rα gene in CD4+ T cells. METHODS We generated Il7rafl/fl/CD4CreERT2 double transgenic mouse line (henceforth CD4ΔIl7ra), susceptible to tamoxifen-induced knockout of the IL-7Rα gene in CD4+ T cells. CD4ΔIl7ra mice were immunized with MOG35 - 55 for EAE induction and monitored for disease development. The expression of IL-7Rα, CD4+ T cell numbers, and MOG35 - 55-specific CD4+ T cell response was evaluated in the central nervous system (CNS) and lymphoid tissues by flow cytometry. Additionally, splenocytes of CD4ΔIl7ra mice were stimulated with MOG35 - 55 to assess their proliferative response and cytokine production by T helper cells. RESULTS Loss of IL-7Rα from the surface of CD4+ T cells in CD4ΔIl7ra mice was virtually complete several days after tamoxifen treatment. The loss of IL-7Rα in CD4+ T cells led to a gradual and substantial decrease in their numbers in both non-immunized and immunized CD4ΔIl7ra mice, followed by slow repopulation up to the initial numbers. CD4ΔIl7ra mice did not develop EAE. We found a decrease in the total numbers of TNF-, IFN-γ-, IL-17 A-, and GM-CSF-producing CD4+ T cells and regulatory T cells in the spleens and CNS of immunized CD4ΔIl7ra mice. Tracking MOG35 - 55-specific CD4+ T cells revealed a significant reduction in their numbers in CD4ΔIl7ra mice and decreased proliferation and cytokine production in response to MOG35 - 55. CONCLUSION Our study demonstrates that IL-7Rα on peripheral CD4+ T cells is essential for their maintenance, immune response, and EAE pathogenesis.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Mice
- Receptors, Interleukin-7/metabolism
- Receptors, Interleukin-7/genetics
- Mice, Transgenic
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Cell Survival/physiology
- Cell Survival/drug effects
- Peptide Fragments/toxicity
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Mice, Knockout
- Cytokines/metabolism
Collapse
Affiliation(s)
- Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Bram Van den Broek
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | | | - Hamed Naziri
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Li R, Li H, Yang X, Hu H, Liu P, Liu H. Crosstalk between dendritic cells and regulatory T cells: Protective effect and therapeutic potential in multiple sclerosis. Front Immunol 2022; 13:970508. [PMID: 36177043 PMCID: PMC9513370 DOI: 10.3389/fimmu.2022.970508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system related to autoimmunity and is characterized by demyelination, neuroinflammation, and neurodegeneration. Cell therapies mediated by dendritic cells (DCs) and regulatory T cells (Tregs) have gradually become accumulating focusing in MS, and the protective crosstalk mechanisms between DCs and Tregs provide the basis for the efficacy of treatment regimens. In MS and its animal model experimental autoimmune encephalomyelitis, DCs communicate with Tregs to form immune synapses and complete a variety of complex interactions to counteract the unbalanced immune tolerance. Through different co-stimulatory/inhibitory molecules, cytokines, and metabolic enzymes, DCs regulate the proliferation, differentiation and function of Tregs. On the other hand, Tregs inhibit the mature state and antigen presentation ability of DCs, ultimately improving immune tolerance. In this review, we summarized the pivotal immune targets in the interaction between DCs and Tregs, and elucidated the protective mechanisms of DC-Treg cell crosstalk in MS, finally interpreted the complex cell interplay in the manner of inhibitory feedback loops to explore novel therapeutic directions for MS.
Collapse
Affiliation(s)
- Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongbo Liu,
| |
Collapse
|
4
|
Liu Y, Zhang C, Li B, Yu C, Bai X, Xiao C, Wang L, Dang E, Yang L, Wang G. A novel role of IL-17A in contributing to the impaired suppressive function of Tregs in psoriasis. J Dermatol Sci 2020; 101:84-92. [PMID: 33334656 DOI: 10.1016/j.jdermsci.2020.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) are crucial in maintaining T cell homeostasis and preventing autoimmune responses. Deficiencies in the suppressive function of Tregs contribute to the pathogenesis of various autoimmune diseases, such as psoriasis. However, whether IL-17A upregulation in psoriatic patients contributes to Treg dysfunction is unknown. OBJECTIVE To explore the effect and underlying mechanism of IL-17A on the suppressive function of Tregs and to evaluate the restoration of the suppressive function of Tregs in psoriasis during anti-IL-17A (secukinumab) treatment. METHODS In vitro suppression assays were performed with or without the addition of IL-17A to the coculture system. The release of inhibitory cytokines, including IL-10 and TGF-β, was assessed by qRT-PCR and flow cytometry. RNA-sequencing was conducted to characterize the cellular responses of Tregs. IL-17A signaling activation was analyzed by flow cytometry and immunofluorescence. Blood samples were collected from three psoriasis patients before and after secukinumab treatment. RESULTS IL-17A blocked the suppressive function of Tregs, possibly by inhibiting the release of TGF-β and promoting the production of IFN-γ. Moreover, IL-17A activated the NF-κB signaling pathway in Tregs. Inhibition of the NF-κB pathway blocked IL-17A-induced upregulation of IFN-γ without affecting the secretion of TGF-β by Tregs. Clinical treatment in psoriasis with secukinumab restored the suppressive function and increased production of TGF-β in Tregs of psoriasis. CONCLUSION Our study implies a crucial role of IL-17A in mediating the dysfunction of the Treg suppressive function in psoriasis. Secukinumab, which neutralizes IL-17A signaling, restored the suppressive function of Tregs to exert its antipsoriatic effect.
Collapse
Affiliation(s)
- Yanghe Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaocui Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|