1
|
Malmhäll-Bah E, Andersson KM, Erlandsson MC, Silfverswärd ST, Pullerits R, Bokarewa MI. Metabolic signature and proteasome activity controls synovial migration of CDC42hiCD14 + cells in rheumatoid arthritis. Front Immunol 2023; 14:1187093. [PMID: 37662900 PMCID: PMC10469903 DOI: 10.3389/fimmu.2023.1187093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Activation of Rho-GTPases in macrophages causes inflammation and severe arthritis in mice. In this study, we explore if Rho-GTPases define the joint destination of pathogenic leukocytes, the mechanism by which they perpetuate rheumatoid arthritis (RA), and how JAK inhibition mitigates these effects. Methods CD14+ cells of 136 RA patients were characterized by RNA sequencing and cytokine measurement to identify biological processes and transcriptional regulators specific for CDC42 hiCD14+ cells, which were summarized in a metabolic signature (MetSig). The effect of hypoxia and IFN-γ signaling on the metabolic signature of CD14+ cells was assessed experimentally. To investigate its connection with joint inflammation, the signature was translated into the single-cell characteristics of CDC42 hi synovial tissue macrophages. The sensitivity of MetSig to the RA disease activity and the treatment effect were assessed experimentally and clinically. Results CDC42 hiCD14+ cells carried MetSig of genes functional in the oxidative phosphorylation and proteasome-dependent cell remodeling, which correlated with the cytokine-rich migratory phenotype and antigen-presenting capacity of these cells. Integration of CDC42 hiCD14+ and synovial macrophages marked with MetSig revealed the important role of the interferon-rich environment and immunoproteasome expression in the homeostasis of these pathogenic macrophages. The CDC42 hiCD14+ cells were targeted by JAK inhibitors and responded with the downregulation of immunoproteasome and MHC-II molecules, which disintegrated the immunological synapse, reduced cytokine production, and alleviated arthritis. Conclusion This study shows that the CDC42-related MetSig identifies the antigen-presenting CD14+ cells that migrate to joints to coordinate autoimmunity. The accumulation of CDC42 hiCD14+ cells discloses patients perceptive to the JAKi treatment.
Collapse
Affiliation(s)
- Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin M.E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Wang J, Xue R, Li C, Hu L, Li Q, Sun Y, Chen Y, Yuan W, Xia Q, Hu L, Wei Y, He M. Inhalation of subway fine particles induces murine extrapulmonary organs damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163181. [PMID: 37001660 DOI: 10.1016/j.scitotenv.2023.163181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Because of its speed and convenience, the subway has become the first choice for travel by many residents. However, the concentration of fine particles (PM2.5) in the air of a subway platform is higher than that of the ground level or carriage. Moreover, the composition and source of subway PM2.5 differ from those of atmospheric PM2.5. Currently, there is insufficient research on the impact of subway PM2.5 on health. In this study, intratracheally subway PM2.5-inoculated wild type (WT) and Rag1-/- mice, lacking functional T cells and B cells, were used to investigate the potential of subway PM2.5 exposure to cause extrapulmonary organ injuries. Subway PM2.5 increased inflammatory cells infiltration, tumor necrosis factor (TNF)-α, interleukin (IL)-6, as well as monocyte chemotactic protein (MCP)-1 gene and protein expression, cyclooxygenase-2 (COX-2) induction, and Toll-like receptor (TLR)-2, TLR4, myeloid differentiation factor 88 (MyD88), and nuclear factor (NF)-κB levels in liver, kidney, spleen, and thymus in a dose-dependent fashion in WT mice. Subway PM2.5 exposure resulted in slight macrophage (F4/80+) and neutrophil (Ly6G+) infiltration and caused no increase in the protein levels of TNF-α, IL-6, MCP-1, or COX-2 in the liver, kidneys, spleen, and thymus of Rag1-/- mice. These results demonstrate a dose-response manner between subway PM2.5 exposure and inflammatory injuries of extrapulmonary organs, which could be related to the TLR/MyD88/NF-κB signaling pathway. Subway PM2.5-induced extrapulmonary organ damage was dependent on T cells and B cells; this finding may provide insight for research on the mechanisms responsible for the health hazards posed by air pollution.
Collapse
Affiliation(s)
- Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qidian Li
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Sun Y, Chen Y, Wang J, Yuan W, Xue R, Li C, Xia Q, Hu L, Wei Y, He M, Lai K. Intratracheally administered iron oxide nanoparticles induced murine lung inflammation depending on T cells and B cells. Food Chem Toxicol 2023; 175:113735. [PMID: 36935073 DOI: 10.1016/j.fct.2023.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Iron oxide nanoparticles (Fe2O3 NPs), produced in track traffic system and a wide range of industrial production, poses a great threat to human health. However, there is little research about the mechanism of Fe2O3 NPs toxicity on respiratory system. Rag1-/- mice which lack functional T and B cells were intratracheally challenged with Fe2O3 NPs, and interleukin (IL)-33 as an activator of group 2 innate lymphoid cells (ILC2s) to observe ILC2s changes. The lung inflammatory response to Fe2O3 NPs was alleviated in Rag1-/- mice compared with wild type (WT) mice. Infiltration of inflammatory cells and collagen deposition in tissue, leukocyte numbers (neutrophils, macrophages and lymphocytes), cytokine levels, such as IL-6, IL-13 and thymic stromal lymphopoietin (TSLP), and expression of Toll-like receptor (TLR)2, TLR4, and downstream myeloid differentiation factor (MyD)88, nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α were decreased in lungs. Fe2O3 NPs markedly elevated ILC2s compared with the control, but ILC2s numbers were much lower compared with IL-33 in both WT and Rag1-/- mice. Furthermore, ILC2s amounts were strongly greater in Rag1-/- mice than WT mice. Our results suggested that Fe2O3 NPs induced sub-chronic pulmonary inflammation, which is majorly dependent on T cells and B cells rather than ILC2s.
Collapse
Affiliation(s)
- Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China.
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
4
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|