1
|
Jinshan Z, Yong Q, Fangqi C, Juanmei C, Min L, Changzheng H. The role of TNF-α as a potential marker for acute cutaneous lupus erythematosus in patients with systemic lupus erythematosus. J Dermatol 2024; 51:1481-1491. [PMID: 38963308 DOI: 10.1111/1346-8138.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Acute cutaneous lupus erythematosus (ACLE) is closely associated with systemic symptoms in systemic lupus erythematosus (SLE). This study aimed to identify potential biomarkers for ACLE and explore their association with SLE to enable early prediction of ACLE and identify potential treatment targets for the future. In total, 185 SLE-diagnosed patients were enrolled and categorized into two groups: those with ACLE and those without cutaneous involvement. After conducting logistic regression analysis of the differentiating factors, we concluded that tumor necrosis factor-alpha (TNF-α) is an independent risk factor for ACLE. Analysis of the receiver operating characteristic revealed an area under the curve of 0.716 for TNF-α. Additionally, both TNF-α and ACLE are positively correlated with disease activity. TNF-α shows promise as a biomarker for ACLE, and in SLE patients, ACLE may serve as a clear indicator of moderate-to-severe disease activity.
Collapse
Affiliation(s)
- Zhan Jinshan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qu Yong
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chen Fangqi
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cao Juanmei
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Dermatology, The First Affiliated Hospital of Shihezi University, Shihezi University, Shihezi, Xinjiang, China
| | - Li Min
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huang Changzheng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Zhu R, Yao X, Li W. Langerhans cells and skin immune diseases. Eur J Immunol 2024; 54:e2250280. [PMID: 39030782 DOI: 10.1002/eji.202250280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Langerhans cells (LCs) are the key antigen-presenting cells in the epidermis in normal conditions and respond differentially to environmental and/or endogenous stimuli, exerting either proinflammatory or anti-inflammatory effects. Current knowledge about LCs mainly originates from studies utilizing mouse models, whereas with the development of single-cell techniques, there has been significant progress for human LCs, which has updated our understanding of the phenotype, ontogeny, differentiation regulation, and function of LCs. In this review, we delineated the progress of human LCs and summarized LCs' function in inflammatory skin diseases, providing new ideas for precise regulation of LC function in the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- Ronghui Zhu
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan, P. R. China
| | - Xu Yao
- Department, of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, P. R. China
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
3
|
Maz MP, Reddy AL, Berthier CC, Tsoi LC, Colesa DJ, Wolf SJ, Shi H, Loftus SN, Moallemian R, Bogle R, Kretzler M, Jacob CO, Gudjonsson JE, Kahlenberg JM. Lupus-prone NZM2328 mice exhibit enhanced UV-induced myeloid cell recruitment and activation in a type I interferon dependent manner. J Autoimmun 2024; 149:103296. [PMID: 39241536 DOI: 10.1016/j.jaut.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Though the exact causes of systemic lupus erythematosus (SLE) remain unknown, exposure to ultraviolet (UV) light is one of the few well-known triggers of cutaneous inflammation in SLE. However, the precise cell types which contribute to the early cutaneous inflammatory response in lupus, and the ways that UV dosing and interferons modulate these findings, have not been thoroughly dissected. Here, we explore these questions using the NZM2328 spontaneous murine model of lupus. In addition, we use iNZM mice, which share the NZM2328 background but harbor a whole-body knockout of the type I interferon (IFN) receptor, and wild-type BALB/c mice. 10-13-week-old female mice of each strain were treated with acute (300 mJ/cm2 x1), chronic (100 mJ/cm2 daily x5 days), or no UVB, and skin was harvested and processed for bulk RNA sequencing and flow cytometry. We identify that inflammatory pathways and gene signatures related to myeloid cells - namely neutrophils and monocyte-derived dendritic cells - are a shared feature of the acute and chronic UVB response in NZM skin greater than iNZM and wild-type skin. We also verify recruitment and activation of these cells by flow cytometry in both acutely and chronically irradiated NZM and WT mice and demonstrate that these processes are dependent on type I IFN signaling. Taken together, these data indicate a skewed IFN-driven inflammatory response to both acute and chronic UVB exposure in lupus-prone skin dominated by myeloid cells, suggesting both the importance of type I IFNs and myeloid cells as therapeutic targets for photosensitive patients and highlighting the risks of even moderate UV exposure in this patient population.
Collapse
Affiliation(s)
- Mitra P Maz
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Alayka L Reddy
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Celine C Berthier
- Div. of Nephrology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Deborah J Colesa
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Hong Shi
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shannon N Loftus
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Rezvan Moallemian
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Bogle
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Div. of Nephrology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chaim O Jacob
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Johann E Gudjonsson
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol 2024; 25:1332-1343. [PMID: 39009839 DOI: 10.1038/s41590-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Understanding the pathogenesis and clinical manifestations of systemic lupus erythematosus (SLE) has been a great challenge. Reductionist approaches to understand the nature of the disease have identified many pathogenetic contributors that parallel clinical heterogeneity. This Review outlines the immunological control of SLE and looks to experimental tools and approaches that are improving our understanding of the complex contribution of interacting genetics, environment, sex and immunoregulatory factors and their interface with processes inherent to tissue parenchymal cells. Efforts to advance precision medicine in the care of patients with SLE along with treatment strategies to correct the immune system hold hope and are also examined.
Collapse
Affiliation(s)
- George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhao M, Cheng Y, Gao J, Zhou F. Single-cell mass cytometry in immunological skin diseases. Front Immunol 2024; 15:1401102. [PMID: 39081313 PMCID: PMC11286489 DOI: 10.3389/fimmu.2024.1401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Immune-related skin diseases represent a collective of dermatological disorders intricately linked to dysfunctional immune system processes. These conditions are primarily characterized by an immoderate activation of the immune system or deviant immune responses, involving diverse immune components including immune cells, antibodies, and inflammatory mediators. However, the precise molecular dysregulation underlying numerous individual cases of these diseases and unique subsets respond under disease conditions remains elusive. Comprehending the mechanisms and determinants governing the homeostasis and functionality of diseases could offer potential therapeutic opportunities for intervention. Mass cytometry enables precise and high-throughput quantitative measurement of proteins within individual cells by utilizing antibodies labeled with rare heavy metal isotopes. Imaging mass cytometry employs mass spectrometry to obtain spatial information on cell-to-cell interactions within tissue sections, simultaneously utilizing more than 40 markers. The application of single-cell mass cytometry presents a unique opportunity to conduct highly multiplexed analysis at the single-cell level, thereby revolutionizing our understanding of cell population heterogeneity and hierarchy, cellular states, multiplexed signaling pathways, proteolysis products, and mRNA transcripts specifically in the context of many autoimmune diseases. This information holds the potential to offer novel approaches for the diagnosis, prognostic assessment, and monitoring responses to treatment, thereby enriching our strategies in managing the respective conditions. This review summarizes the present-day utilization of single-cell mass cytometry in studying immune-related skin diseases, highlighting its advantages and limitations. This technique will become increasingly prevalent in conducting extensive investigations into these disorders, ultimately yielding significant contributions to their accurate diagnosis and efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yuqi Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
6
|
Yamamoto T. Role of neutrophils in cutaneous lupus erythematosus. J Dermatol 2024; 51:180-184. [PMID: 38009863 PMCID: PMC11484148 DOI: 10.1111/1346-8138.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023]
Abstract
There are various types of cutaneous lupus erythematosus (CLE), either with or without the association of systemic lupus erythematosus (SLE). In some of the subtypes of cutaneous lupus, histopathology reveals neutrophil infiltration in the lesional skin; however, the significance of neutrophils in CLE is not yet fully elucidated. Recent studies have shown that neutrophil extracellular traps (NETs) formation by activated neutrophils is observed in several types of CLE, including lupus panniculitis, subacute lupus erythematosus, and acute lupus erythematosus, although the number of reports is small. Excessive NETosis, due to either increased NETs formation or defective clearance of NETs, may play a role in the induction of autoimmunity and autoantibody production in SLE, as well as endothelial damage, thrombus formation, and vascular damage in the lesional skin. CLE is an excessive interferon-driven autoimmune disease. Plasmacytoid dendritic cells are located in lupus erythematosus skin and contribute to the etiology of skin lesions as a main producing cell of type I interferon. Neutrophils, monocytes, and keratinocytes also produce type I interferon via several triggers. Neutrophils play an important role in the innate immune response in SLE. In this review, several types of CLE with neutrophil infiltration, as well as the role of neutrophils are discussed.
Collapse
|
7
|
Klein B, Reynolds MB, Xu B, Gharaee-Kermani M, Gao Y, Berthier CC, Henning S, Loftus SN, McNeely KE, Victory AM, Dobry C, Hile GA, Ma F, Turnier JL, Gudjonsson JE, O’Riordan MX, Kahlenberg JM. Epidermal ZBP1 stabilizes mitochondrial Z-DNA to drive UV-induced IFN signaling in autoimmune photosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576771. [PMID: 38328232 PMCID: PMC10849619 DOI: 10.1101/2024.01.23.576771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. Here, we show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV)B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is significantly upregulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. Strikingly, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cGAS-STING activation compared to B-DNA. ZBP1 knockdown abrogates UV-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yiqing Gao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Svenja Henning
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kelsey E. McNeely
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Amanda M. Victory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Jessica L. Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor
| | | | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Zheremyan EA, Ustiugova AS, Karamushka NM, Uvarova AN, Stasevich EM, Bogolyubova AV, Kuprash DV, Korneev KV. Breg-Mediated Immunoregulation in the Skin. Int J Mol Sci 2024; 25:583. [PMID: 38203754 PMCID: PMC10778726 DOI: 10.3390/ijms25010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.
Collapse
Affiliation(s)
- Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nina M. Karamushka
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Center for Hematology, 125167 Moscow, Russia
| |
Collapse
|
9
|
McCormick ET, Draganski A, Chalmers S, Zahn J, Garcia S, Nussbaum D, Friedman A, Putterman C, Friedman J. Nano-encapsulated anandamide reduces inflammatory cytokines in vitro and lesion severity in a murine model of cutaneous lupus erythematosus. Exp Dermatol 2023; 32:2072-2083. [PMID: 37726950 DOI: 10.1111/exd.14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune skin disease which occurs independently and in conjunction with systemic lupus erythematosus. Drug development for CLE is severely lacking. Anandamide (AEA) is a primary endocannabinoid which exhibits immunomodulatory effects through mixed cannabinoid receptor agonism. We evaluated AEA as topical treatment for CLE and assessed benefits of nanoparticle encapsulation (AEA-NP) on cutaneous drug penetration, delivery and biological activity. Compared to untreated controls, AEA-NP decreased IL-6 and MCP-1 in UVB-stimulated keratinocytes (p < 0.05) in vitro. In BALB/c mice, AEA-NP displayed improved cutaneous penetration, extended release and persistence of AEA in the follicular unit extending to the base after 24 h. Utilizing the MRL-lpr lupus murine model, twice weekly treatment of lesions with topical AEA-NP for 10 weeks led to decreased clinical and histologic lesion scores compared to unencapsulated AEA and untreated controls (p < 0.05). Prophylactic application of AEA-NP to commonly involved areas on MRL-lpr mice similarly resulted in decreased clinical and histologic scores when compared to controls (p < 0.05), and reduced C3 and IBA-1 in lesional tissue (p < 0.05). The demonstrated clinical and immunomodulatory effects of treatment with AEA support its potential as therapy for CLE. This work also suggests that encapsulation of AEA improves penetration and treatment efficacy. Future studies will be conducted to assess full therapeutic potential.
Collapse
Affiliation(s)
- Erika T McCormick
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Samantha Chalmers
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
| | - Joseph Zahn
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sayra Garcia
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
| | - Dillon Nussbaum
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam Friedman
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chaim Putterman
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
- Azrieli Faculty of Medicine of Bar-Ilan University, Zefat, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Joel Friedman
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
| |
Collapse
|
10
|
Fagone P, Piombino E, Mangano K, De Pasquale R, Nicoletti F, Caltabiano R. Evaluation of the Involvement of Heme Oxygenase-1 Expression in Discoid Lupus Erythematosus Lesions. Antioxidants (Basel) 2023; 12:1352. [PMID: 37507892 PMCID: PMC10376595 DOI: 10.3390/antiox12071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Discoid lupus erythematosus (DLE) is a chronic autoimmune disease that primarily affects the skin, causing red, scaly patches that may be disfiguring and can cause permanent scarring. This study aimed to investigate the potential clinical and therapeutic applications of heme oxygenase-1 (HMOX1) in the context of DLE. Immunohistochemical staining and bioinformatics analysis were performed on skin biopsy samples from DLE patients to examine the levels of HMOX1 and to correlate with markers of inflammation. Our study revealed a negative correlation between HMOX1 levels and the inflammatory status of DLE lesions, as well as an inverse correlation between HMOX1 levels and the infiltration of M1 macrophages and activated mastocytes. These findings suggest that HMOX1 plays a crucial role in the regulation of inflammation in DLE and could be a potential therapeutic target and biomarker for DLE.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Eliana Piombino
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rocco De Pasquale
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| |
Collapse
|