1
|
Tang N, Luo X, Ding Z, Shi Y, Cao X, Wu S. Single-Cell Multi-Dimensional data analysis reveals the role of ARL4C in driving rheumatoid arthritis progression and Macrophage polarization dynamics. Int Immunopharmacol 2024; 141:112987. [PMID: 39182267 DOI: 10.1016/j.intimp.2024.112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis (RA) is an enduring autoimmune inflammatory condition distinguished by continual joint inflammation, hyperplasia of the synovium, erosion of bone, and deterioration of cartilage.Fibroblast-like synoviocytes (FLSs) exhibiting "tumor-like" traits are central to this mechanism.ADP-ribosylation factor-like 4c (ARL4C) functions as a Ras-like small GTP-binding protein, significantly impacting tumor migration, invasion, and proliferation.However, it remains uncertain if ARL4C participates in the stimulation of RA FLSs exhibiting "tumor-like" features, thereby fostering the advancement of RA. In our investigation, we unveiled, for the inaugural instance, via the amalgamated scrutiny of single-cell RNA sequencing (scRNA-seq) and Bulk RNA sequencing (Bulk-seq) datasets, that activated fibroblast-like synoviocytes (FLSs) showcase high expression of ARL4C, and the ARL4C protein expression in FLSs derived from RA patients significantly surpasses that observed in individuals with osteoarthritis (OA) and traumatic injury (trauma).Silencing of the ARL4C gene markedly impeded the proliferation of RA FLSs by hindered the transition of cells from the G0/G1 phase to the S phase, and intensified cell apoptosis and diminished the migratory and invasive capabilities. Co-culture of ARL4C gene-silenced RA FLSs with monocytes/macrophages significantly inhibited the polarization of monocytes/macrophages toward M1 and the repolarization of M2 to M1.Furthermore, intra-articular injection of shARL4C significantly alleviated synovial inflammation and cartilage erosion in collagen-induced arthritis (CIA) rats. In conclusion, our discoveries propose that ARL4C assumes a central role in the synovial inflammation, cartilage degradation, and bone erosion associated with RA by triggering the PI3K/AKT and MAPK signaling pathways within RA FLSs.ARL4C holds promise as a prospective target for the development of pharmaceutical agents targeting FLSs, with the aim of addressing RA.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin Luo
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyu Ding
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yanbin Shi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Song Wu
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Wu Y, Wang Z, Ge Y, Zhu Y, Tian T, Wei J, Jin Y, Zhao Y, Jia Q, Wu J, Ge L. Microenvironment Responsive Hydrogel Exerting Inhibition of Cascade Immune Activation and Elimination of Synovial Fibroblasts for Rheumatoid Arthritis Therapy. J Control Release 2024; 370:747-762. [PMID: 38740094 DOI: 10.1016/j.jconrel.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease and drug therapy has been restricted due to poor therapeutic efficacy and adverse effects. In RA synovium, dendritic cells present self-antigens to activate cascade immune pathway. Furthermore, downstream macrophages secrete high levels of pro-inflammatory cytokines; Hyperplasia of activated synovial fibroblasts (FLS) is responsible for hypoxic synovium microenvironment, secretion of cytokines/chemokines and erosion of bone/cartilage tissues. Positive feedback loop of inflammation between macrophages and FLS independent of antigen-presentation is constructed. Herein, an injectable pH-sensitive peptide hydrogel encapsulating siRNA/Methotrexate-polyethyleneimine (siMP, including sip65MP, sip38MP, siCD86MP) and Bismuthene nanosheet/Methotrexate-polyethyleneimine (BiMP) is successfully developed. Among them, siCD86MP reduces protein level of co-stimulatory molecule CD86 while sip65MP and sip38MP separately inhibit NF-κB and MAPK-p38 pathways of macrophages and FLS to suppress secretion of cytokines and MMPs. Meanwhile, reduction in anti-apoptotic property of FLS induced by inhibition of NF-κB pathway has a synergistic effect with photodynamic therapy (PDT) and photothermal therapy (PTT) mediated by BiMP for FLS elimination, effectively ameliorating hypoxic synovium microenvironment. After being injected into synovium, hydrogel responds to acidic microenvironment and serves as a reservoir for sustained drug release and inherent retention capacity of which enables cationic nanoparticles to bypass tissue barrier for precise synovium targeting. This brand-new drug delivery system combines modulating cascade immune pathway from beginning to end by RNAi and eliminating FLS for improving synovium microenvironment by phototherapy together, providing a robust strategy for clinical RA treatment.
Collapse
Affiliation(s)
- Yiqun Wu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Zhongshi Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Department of Pharmacy, The Affiliated Hospital of Nantong University, Jiangsu 226006, China
| | - Yu Ge
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ying Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, China
| | - Tianli Tian
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jun Wei
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yu Jin
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qiang Jia
- Guangzhou City Polytechnic, Guangzhou, Guangdong 510520, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou 510120, China; Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511458, China; Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China.
| | - Liang Ge
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
3
|
Chen J, Shi X, Deng Y, Dang J, Liu Y, Zhao J, Liang R, Zeng D, Wu W, Xiong Y, Yuan J, Chen Y, Wang J, Lin W, Chen X, Huang W, Olsen N, Pan Y, Fu Q, Zheng SG. miRNA-148a-containing GMSC-derived EVs modulate Treg/Th17 balance via IKKB/NF-κB pathway and treat a rheumatoid arthritis model. JCI Insight 2024; 9:e177841. [PMID: 38652539 PMCID: PMC11141912 DOI: 10.1172/jci.insight.177841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Deng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junlong Dang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zhao
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Yiding Xiong
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yuan
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Lin
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfang Chen
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, The Penn State University Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Yunfeng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zeng LH, Tang C, Yao M, He Q, Qv M, Ren Q, Xu Y, Shen T, Gu W, Xu C, Zou C, Ji X, Wu X, Wang J. Phosphorylation of human glioma-associated oncogene 1 on Ser937 regulates Sonic Hedgehog signaling in medulloblastoma. Nat Commun 2024; 15:987. [PMID: 38307877 PMCID: PMC10837140 DOI: 10.1038/s41467-024-45315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China.
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Minli Yao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Meiyu Qv
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qianlei Ren
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weizhong Gu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chengyun Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chaochun Zou
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jirong Wang
- Department of Geriatrics, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
5
|
Afsar B, Afsar RE. Salt Behind the Scenes of Systemic Lupus Erythematosus and Rheumatoid Arthritis. Curr Nutr Rep 2023; 12:830-844. [PMID: 37980312 DOI: 10.1007/s13668-023-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE OF REVIEW Sodium is vital for human health. High salt intake is a global health problem and is associated with cardiovascular morbidity and mortality. Recent evidence suggests that both innate and adaptive immune systems are affected by sodium. In general, excess salt intake drives immune cells toward a pro-inflammatory phenotype. The incidence of autoimmune diseases, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is steadily increasing. As excess salt induces a pro-inflammatory state, increased salt intake may have impacts on autoimmune diseases. The relationship between salt intake and autoimmune diseases is most widely studied in patients with SLE or RA. This review aimed to summarize the relationship between salt intake and SLE and RA. RECENT FINDINGS Most, but not all, of these studies showed that high salt intake might promote SLE by M1 macrophage shift, increase in Th17/Treg cell ratio, activation of dendritic and follicular helper T cells, and increased secretion of pro-inflammatory cytokines. In RA, apart from driving immune cells toward a pro-inflammatory state, high salt intake also influences cellular signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL), Rho GTPases, and MAPK (mitogen-activated protein kinase). There is now sufficient evidence that excess salt intake may be related to the development and progression of SLE and RA, although there are still knowledge gaps. More studies are warranted to further highlight the relationship between excess salt intake, SLE, and RA. Salt intake may affect cell types and pro-inflammatory cytokines and signaling pathways associated with the development and progression of systemic lupus erythematosus and rheumatoid arthritis. Bcl-6 B-cell lymphoma, 6 Erk extracellular signal-regulated kinases, IFN-γ interferon-gamma, JNK c-Jun N-terminal kinase, IL-4 interleukin 4, IL-6 interleukin 6, MAPK mitogen-activated protein kinase, STAT signal transducer and activator of transcription, Tnf-α tumor necrosis factor, Treg T regulatory cell.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
6
|
Cai L, Meng B, Jiang F, Shu WH, Wang XH, Wang MQ, Wu XJ, Hu MW, Yang YC, Ran X, Li R. Novel HIF-1α Inhibitor AMSP-30m Mitigates the Pathogenic Cellular Behaviors of Hypoxia-Stimulated Fibroblast-Like Synoviocytes and Alleviates Collagen-Induced Arthritis in Rats via Inhibiting Sonic Hedgehog Pathway. Inflammation 2023; 46:2289-2305. [PMID: 37480451 DOI: 10.1007/s10753-023-01878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Synovial hypoxia-inducible factor 1α (HIF-1α) is a prospective therapeutic target for rheumatoid arthritis (RA). AMSP-30 m, a novel HIF-1α inhibitor, was reported to have notable anti-arthritic effects in rats with adjuvant-induced arthritis. However, its roles in inhibiting the pathogenic behaviors of fibroblast-like synoviocytes (FLS) and the involved mechanisms remain unknown. Here, AMSP-30 m inhibited proliferation and induced apoptosis in hypoxia-induced RA FLS (MH7A cell line), as evidenced by decreased cell viability, reduced Ki67-positive cells, G0/G1 phase arrest, lowered C-myc and Cyclin D1 protein levels, emergence of apoptotic nuclear fragmentation, raised apoptosis rates, and activation of caspase 3. Furthermore, AMSP-30 m prevented hypoxia-induced increases in pro-inflammatory factor production, MMP-2 activity, migration index, migrated/invasive cells, and actin cytoskeletal rearrangement. In vivo, AMSP-30 m alleviated the severity of rat collagen-induced arthritis (CIA). Mechanically, AMSP-30 m reduced HIF-1α expression and blocked sonic hedgehog (Shh) pathway activation in hypoxia-induced MH7A cells and CIA rat synovium, as shown by declines in pathway-related proteins (Shh, Smo, and Gli-1). Particularly, the combination of Shh pathway inhibitor cyclopamine enhanced AMSP-30 m's inhibitory effects on the pathogenic behaviors of hypoxia-stimulated MH7A cells, whereas the combination of Shh pathway activator SAG canceled AMSP-30 m's therapeutic effects in vitro and in CIA rats, implying a close involvement of Shh pathway inhibition in its anti-arthritic effects. We likewise confirmed AMSP-30 m's anti-proliferative role in hypoxia-induced primary CIA FLS. Totally, AMSP-30 m suppressed hypoxia-induced proliferation, inflammation, migration, and invasion of MH7A cells and ameliorated the severity of rat CIA via inhibiting Shh signaling.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Wen-Hao Shu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xiao-Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xin-Jie Wu
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Ming-Wang Hu
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Yu-Chen Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, People's Republic of China.
| |
Collapse
|