1
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
2
|
Xia L, Li C, Zhao J, Sun Q, Mao X. Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156150. [PMID: 39740376 DOI: 10.1016/j.phymed.2024.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM). MFH plants have drawn much attention due to their strong biological activity and low toxicity. However, the interplay of MFH and gut microbiota in rebalancing the immune homeostasis in combating diseases needs systematic illumination. PURPOSE The review discusses the interaction between MFH and gut microbiota, including the effect of MFH on the major group of gut microbiota and the metabolic effect of gut microbiota on MFH. Moreover, how gut microbiota influences the immune system in terms of innate and adaptive immunity is addressed. Finally, the immunoregulatory mechanisms of MFH in regulation of host pathophysiology via gut microbiota are summarized. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, and Google Scholar using relevant keywords. The obtained articles were screened and summarized by the research content of MFH and gut microbiota in immune regulation. RESULTS The review demonstrates the interaction between MFH and gut microbiota in disease prevention and treatment. Not only do the intestinal microorganisms and intestinal mucosa constitute an important immune barrier of the human body, but also lymphoid tissue and diffused immune cells within the mucosa participate in the response of innate immunity and adaptive immunity. MFH modulates immune regulation by affecting intestinal flora, helps maintain the balance of the immune system and interfere with the occurrence and development of a broad category of diseases. CONCLUSION Being absorbed from the gastrointestinal tract, MFH can have profound effects on gut microbiota. In turn, the gut microbiota also actively participate in the bioconversion of complex constituents from MFH, which could further influence their physiological and pharmacological properties. The review deepens the understanding of the relationship among MFH, gut microbiota, immune system, and human diseases and further promotes the progression of additional relevant research.
Collapse
Affiliation(s)
- Lu Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chuangen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food sciences, Florida State University, Tallahassee, USA
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
3
|
Rui W, Li X, Wang L, Tang X, Yang J. Potential Applications of Blautia wexlerae in the Regulation of Host Metabolism. Probiotics Antimicrob Proteins 2024; 16:1866-1874. [PMID: 38703323 DOI: 10.1007/s12602-024-10274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Blautia wexlerae (B. wexlerae) is a strong candidate with the potential to become a next-generation probiotics (NGPs) and has recently been shown for the first time to exhibit potential in modulating host metabolic levels and alleviating metabolic diseases. However, the factors affecting the change in abundance of B. wexlerae and the pattern of its abundance change in the associated indications remain to be further investigated. Here, we summarize information from published studies related to B. wexlerae; analyze the effects of food source factors such as prebiotics, probiotics, low protein foods, polyphenols, vitamins, and other factors on the abundance of B. wexlerae; and explore the patterns of changes in the abundance of B. wexlerae in metabolic diseases, neurological diseases, and other diseases. At the same time, the development potential of B. wexlerae was evaluated in the direction of functional foods and special medical foods.
Collapse
Affiliation(s)
- Wen Rui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, China
| | - Xiaoqian Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, China
| | - Lijun Wang
- Department of Endodontology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China.
| | - Xuna Tang
- Department of Specialist Clinic, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, China.
| |
Collapse
|
4
|
Yang Y, Xu Z, Guo J, Xiong Z, Hu B. Exploring the gut microbiome-Postoperative Cognitive Dysfunction connection: Mechanisms, clinical implications, and future directions. Brain Behav Immun Health 2024; 38:100763. [PMID: 38682010 PMCID: PMC11052898 DOI: 10.1016/j.bbih.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Postoperative Cognitive Dysfunction (POCD) is a common yet poorly understood complication of surgery that can lead to long-term cognitive decline. The gut-brain axis, a bidirectional communication system between the central nervous system and the gut microbiota, plays a significant role in maintaining cognitive health. The potential for anesthetic agents and perioperative medications to modulate the gut microbiota and influence the trajectory of POCD suggests the need for a more integrated approach in perioperative care. Perioperative medications, including opioids and antibiotics, further compound these disruptions, leading to dysbiosis and consequent systemic and neuroinflammation implicated in cognitive impairment. Understanding how surgical interventions and associated treatments affect this relationship is crucial for developing strategies to reduce the incidence of POCD. Strategies to preserve and promote a healthy gut microbiome may mitigate the risk and severity of POCD. Future research should aim to clarify the mechanisms linking gut flora alterations to cognitive outcomes and explore targeted interventions, such as probiotic supplementation and microbiota-friendly prescription practices, to safeguard cognitive function postoperatively.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Xuzhou Renci Hospital, Xuzhou, 221000, Jiangsu Province, China
| | - Zhipeng Xu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Jianrong Guo
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
5
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2024:10.1111/febs.17161. [PMID: 38817090 PMCID: PMC11607183 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | | | - Kristina Hill
- Department of Biological Sciences, Boise State University, Boise, ID 83725
| | | |
Collapse
|
6
|
Warren A, Nyavor Y, Beguelin A, Frame LA. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: a narrative review. Front Immunol 2024; 15:1365871. [PMID: 38756771 PMCID: PMC11096445 DOI: 10.3389/fimmu.2024.1365871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Aaron Beguelin
- The Department of Biotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
7
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Matsuzaka Y, Yashiro R. Unraveling the Immunopathogenesis of Multiple Sclerosis: The Dynamic Dance of Plasmablasts and Pathogenic T Cells. BIOLOGICS 2023; 3:232-252. [DOI: 10.3390/biologics3030013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in the number of patients, and it often occurs in young people, with an average age of onset of around 30 years old, but it can also occur in children and the elderly. It is more common in women than men, with a male-to-female ratio of approximately 1:3. As the immunopathogenesis of MS, a group of B cells called plasmablasts controls encephalomyelitis via IL-10 production. These IL-10-producing B cells, called regulatory B cells, suppress inflammatory responses in experimental mouse models of autoimmune diseases including MS. Since it has been clarified that these regulatory B cells are plasmablasts, it is expected that the artificial control of plasmablast differentiation will lead to the development of new treatments for MS. Among CD8-positive T cells in the peripheral blood, the proportion of PD-1-positive cells is decreased in MS patients compared with healthy controls. The dysfunction of inhibitory receptors expressed on T cells is known to be the core of MS immunopathology and may be the cause of chronic persistent inflammation. The PD-1+ CD8+ T cells may also serve as indicators that reflect the condition of each patient in other immunological neurological diseases such as MS. Th17 cells also regulate the development of various autoimmune diseases, including MS. Thus, the restoration of weakened immune regulatory functions may be a true disease-modifying treatment. So far, steroids and immunosuppressants have been the mainstream for autoimmune diseases, but the problem is that this kills not only pathogenic T cells, but also lymphocytes, which are necessary for the body. From this understanding of the immune regulation of MS, we can expect the development of therapeutic strategies that target only pathogenic immune cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryu Yashiro
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
10
|
Hoffman K, Doyle WJ, Schumacher SM, Ochoa-Repáraz J. Gut microbiome-modulated dietary strategies in EAE and multiple sclerosis. Front Nutr 2023; 10:1146748. [PMID: 37063324 PMCID: PMC10090556 DOI: 10.3389/fnut.2023.1146748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Over the last few decades, the incidence of multiple sclerosis has increased as society's dietary habits have switched from a whole foods approach to a high fat, high salt, low dietary fiber, and processed food diet, termed the "Western diet." Environmental factors, such as diet, could play a role in the pathogenesis of multiple sclerosis due to gut microbiota alterations, gut barrier leakage, and subsequent intestinal inflammation that could lead to exacerbated neuroinflammation. This mini-review explores the gut microbiome alterations of various dietary strategies that improve upon the "Western diet" as promising alternatives and targets to current multiple sclerosis treatments. We also provide evidence that gut microbiome modulation through diet can improve or exacerbate clinical symptoms of multiple sclerosis, highlighting the importance of including gut microbiome analyses in future studies of diet and disease.
Collapse
Affiliation(s)
| | | | | | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
11
|
Haahtela T, Alenius H, Auvinen P, Fyhrquist N, von Hertzen L, Jousilahti P, Karisola P, Laatikainen T, Lehtimäki J, Paalanen L, Ruokolainen L, Saarinen K, Valovirta E, Vasankari T, Vlasoff T, Erhola M, Bousquet J, Vartiainen E, Mäkelä MJ. A short history from Karelia study to biodiversity and public health interventions. FRONTIERS IN ALLERGY 2023; 4:1152927. [PMID: 36998574 PMCID: PMC10043497 DOI: 10.3389/falgy.2023.1152927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Contact with natural environments enriches the human microbiome, promotes immune balance and protects against allergies and inflammatory disorders. In Finland, the allergy & asthma epidemic became slowly visible in mid 1960s. After the World War II, Karelia was split into Finnish and Soviet Union (now Russia) territories. This led to more marked environmental and lifestyle changes in the Finnish compared with Russian Karelia. The Karelia Allergy Study 2002–2022 showed that allergic conditions were much more common on the Finnish side. The Russians had richer gene-microbe network and interaction than the Finns, which associated with better balanced immune regulatory circuits and lower allergy prevalence. In the Finnish adolescents, a biodiverse natural environment around the homes associated with lower occurrence of allergies. Overall, the plausible explanation of the allergy disparity was the prominent change in environment and lifestyle in the Finnish Karelia from 1940s to 1980s. The nationwide Finnish Allergy Programme 2008–2018 implemented the biodiversity hypothesis into practice by endorsing immune tolerance, nature contacts, and allergy health with favorable results. A regional health and environment programme, Nature Step to Health 2022–2032, has been initiated in the City of Lahti, EU Green Capital 2021. The programme integrates prevention of chronic diseases (asthma, diabetes, obesity, depression), nature loss, and climate crisis in the spirit of Planetary Health. Allergic diseases exemplify inappropriate immunological responses to natural environment. Successful management of the epidemics of allergy and other non-communicable diseases may pave the way to improve human and environmental health.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Correspondence: Tari Haahtela
| | - Harri Alenius
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petri Auvinen
- DNA Sequencing and GenomicsLaboratory, Institute of Biotechnology, Helsinki, Finland
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Piia Karisola
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Laura Paalanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Erkka Valovirta
- Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
- Allergy Clinic, Terveystalo, Turku, Finland
| | - Tuula Vasankari
- Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
- Finnish Lung Health Association (FILHA), Helsinki, Finland
| | - Tiina Vlasoff
- North Karelia Centre for Public Health, Joensuu, Finland
| | - Marina Erhola
- Pirkanmaa Joint Authority for Health Services and Social Welfare, Tampere, Finland
| | - Jean Bousquet
- Institute of Allergology, Charité — Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- University Hospital Montpellier, Montpellier, France
| | - Erkki Vartiainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Mika J. Mäkelä
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| |
Collapse
|