1
|
Zhao S, Wu D, Lu Y, Zhu L, Wang S, Li Z, Peng X, Li H, Xu X, Su W. Single-cell RNA sequencing indicates AP-1 as a potential therapeutic target for autoimmune uveitis. Biochem Pharmacol 2025:116945. [PMID: 40228638 DOI: 10.1016/j.bcp.2025.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Autoimmune uveitis (AU) is a sight-threatening eye disease, marked by a complex pathogenesis and limited treatment options. Herein, we conducted single-cell RNA sequencing (scRNA-seq) on the spleen and cervical draining lymph nodes (CDLNs) of both normal and experimental autoimmune uveitis (EAU) mice and found common alterations in celluar composition and transcriptional regulation occurred throughout the EAU process. Moreover, we identified activator protein-1 (AP-1) as a pivotal disease-related molecule in the pathogenesis of EAU. Inhibiting AP-1 alleviated symptoms of EAU and reduced the retina infiltration of T helper 17 cells (Th17) and Th1 cells. Additionally, following treatment with the AP-1 inhibitor, both the spleen and CDLNs showed decreased Th17 and Th1 cell proportions. Meanwhile, in vitro studies revealed that treatment with AP-1 inhibitor reduced the level of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-23 (IL-23), two pivotal molecules implicated in the Th17 cell pathogenicity, during EAU. The adoptive transfer experiment also showed that inhibiting AP-1 in CD4+ T cells suppressed their ability to elicit EAU. Altogether, our study demonstrates that AP-1 might involved in EAU pathogenesis by supporting Th17 cell pathogenicity via the GM-CSF/IL-23 feedback loop. Thus, AP-1 inhibition might be a novel treatment strategy for uveitis.
Collapse
Affiliation(s)
- Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yao Lu
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | | | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - He Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
2
|
Jiang L, Duan R, Yu X, Huang Z, Peng X, Wang T, Li Z, Liu X, Wang M, Su W. An analysis of single-cell data reveals therapeutic effects of AMG487 in experimental autoimmune uveitis. Biochem Pharmacol 2025; 232:116671. [PMID: 39615601 DOI: 10.1016/j.bcp.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Uveitis, an ocular autoimmune disease that poses a significant threat to vision, is caused by immune cells erroneously attacking retinal cells and currently lacks specific and effective therapeutic interventions. The CXC chemokine receptor 3 (CXCR3) facilitates the migration of immune cells to sites of inflammation. AMG487, a CXCR3 antagonist, holds potential for treating autoimmune diseases by blocking immunes cells chemotaxis. However, its effects and mechanisms in uveitis remain unclear. Using single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing, we observed increased expression of CXCR3 and chemotactic pathways in peripheral blood of Vogt-Koyanagi-Harada patients and cervical lymph nodes of experimental autoimmune uveitis mice. AMG487 treatment in experimental autoimmune uveitis was shown to be therapeutically effective. Analysis of flow cytometry and single-cell RNA sequencing in AMG487-treated mice revealed reduced expression of inflammatory genes in immune cells. Specifically, AMG487 decreased the proportion of plasma cell in B cells, restored the ratio between effector T cells and regulatory T cells, and diminished T helper (Th) 17 cell pathogenicity by suppressing highly inflammatory granulocyte-macrophage colony-stimulating factor-producing Th17 cells while enhancing anti-inflammatory interleukin-10-producing Th17 cells. Our study presents an exhaustive single-cell transcriptional analysis of immune cells under AMG487 treatment, thereby elucidating potential mechanisms and providing a potential reference for the development of novel therapeutic strategies for autoimmune diseases.
Collapse
Affiliation(s)
- Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Duan R, Wang T, Li Z, Jiang L, Yu X, He D, Tao T, Liu X, Huang Z, Feng L, Su W. Ketogenic diet modulates immune cell transcriptional landscape and ameliorates experimental autoimmune uveitis in mice. J Neuroinflammation 2024; 21:319. [PMID: 39627787 PMCID: PMC11613848 DOI: 10.1186/s12974-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/20/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Uveitis manifests as immune-mediated inflammatory disorders within the eye, posing a serious threat to vision. The ketogenic diet (KD) has emerged as a promising dietary intervention, yet its impact on the immune microenvironments and role in uveitis remains unclear. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) data from lymph node and retina of mice, we conduct a comprehensive investigation into the effects of KD on immune microenvironments. Flow cytometry is conducted to verify the potential mechanisms. RESULTS This study demonstrates that KD alters the composition and function of immune profiles. Specifically, KD promotes the differentiation of Treg cells and elevates its proportion in heathy mice. In response to experimental autoimmune uveitis challenges, KD alleviates the inflammatory symptoms, lowers CD4+ T cell pathogenicity, and corrects the Th17/Treg imbalance. Additionally, KD decreases the proportion of Th17 cell and increases Treg cells in the retina. Analysis of combined retinal and CDLN immune cells reveals that retinal immune cells, particularly CD4+ T cells, exhibit heightened inflammatory responses, which KD partially reverses. CONCLUSIONS The KD induces inhibitory structural and functional alterations in immune cells from lymph nodes to retina, suggesting its potential as a therapy for uveitis.
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Daquan He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Lei Feng
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Yuan F, Zhang R, Li J, Lei Q, Wang S, Jiang F, Guo Y, Xiang M. CCR5-overexpressing mesenchymal stem cells protect against experimental autoimmune uveitis: insights from single-cell transcriptome analysis. J Neuroinflammation 2024; 21:136. [PMID: 38802924 PMCID: PMC11131209 DOI: 10.1186/s12974-024-03134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.
Collapse
Affiliation(s)
- Fa Yuan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rong Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jiani Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qiannan Lei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shuyi Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Fanying Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yanan Guo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Liu J, Liao X, Li N, Xu Z, Yang W, Zhou H, Liu Y, Zhang Z, Wang G, Hou S. Single‐cell RNA sequencing reveals inflammatory retinal microglia in experimental autoimmune uveitis. MedComm (Beijing) 2024; 5:e534. [PMID: 38585235 PMCID: PMC10999176 DOI: 10.1002/mco2.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Autoimmune uveitis (AU) is a kind of immune-mediated disease resulting in irreversible ocular damage and even permanent vision loss. However, the precise mechanism underlying dynamic immune changes contributing to disease initiation and progression of AU remains unclear. Here, we induced an experimental AU (EAU) model with IRBP651-670 and found that day[D]14 was the inflammatory summit with remarking clinical and histopathological manifestations and the activation of retinal microglia exhibited a time-dependent pattern in the EAU course. We conducted single-cell RNA sequencing of retinal immune cells in EAU mice at four time points and found microglia constituting the largest proportion, especially on D14. A novel inflammatory subtype (Cd74high Ccl5high) of retinal microglia was identified at the disease peak that was closely associated with modulating immune responses. In vitro experiments indicated that inflammatory stimuli induced proinflammatory microglia with the upregulation of CD74 and CCL5, and CD74 overexpression in microglia elicited their proinflammatory phenotype via nuclear factor-kappa B signaling that could be attenuated by the treatment of neutralizing CCL5 antibody to a certain extent. In-vivo blockade of Cd74 and Ccl5 effectively alleviated retinal microglial activation and disease phenotype of EAU. Therefore, we propose targeting CD74 and CCL5 of retinal microglia as promising strategies for AU treatment.
Collapse
Affiliation(s)
- Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Na Li
- Department of Laboratory MedicineBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Wang Yang
- Department of KidneyFirst Affiliated HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hongxiu Zhou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina
| |
Collapse
|