1
|
Rajendiran V, El Rassi Z. Reversed-phase capillary electrochromatography of pre-column derivatized mono- and oligosaccharides with three different ultraviolet absorbing tags. J Chromatogr A 2022; 1671:463025. [PMID: 35421735 DOI: 10.1016/j.chroma.2022.463025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
In this research report, an in house developed octadecyl monolithic (ODM) column has been exploited in the reversed-phase capillary electrochromatography (RP-CEC) of precolumn derivatized mono- and oligosaccharides with three different tagging agents, namely 1-naphthylamine (1-NA), 2-aminoanthracene (2-AA) and 3-amino-2,7-naphthalenedisulfonic acid (ANDSA). These three derivatizing agents, which differed in their charges, nonpolar characters and optical absorption properties, led to different RP-CEC elution patterns and UV detection signals. In fact, the limit of detection of the derivatized sugars were 50 µM for the ANDSA- and 1-NA-sugar derivatives and 35 µM for the 2-AA-sugar derivatives due to the presence of three fused aromatic rings in 2-AA versus 2 fused rings in the 1-NA and ANDSA tags. Furthermore, while the longer ANDSA-oligosaccharides eluted later than the shorter ones and the ANDSA-monosaccharides, 1-NA- and 2-AA-sugar derivatives necessitated the presence of borate ions at alkaline pH in the mobile phase to form in situ charged derivatives to facilitate their separation by RP-CEC, and the elution order was the reversal of that observed with the ANDSA-sugar derivatives; that is the mono- eluted later than the larger size oligosaccharides. In addition, plots of log tR vs. number of glucose residues (nGlc) for derivatized glucose and maltooligosaccharides yielded straight lines with slopes representing log η where η is the retention time modulus (i.e., ratio of retention time of two neighboring derivatives differing in one glucosyl residue). In the case of 1-NA and 2-AA derivatives, η was smaller than unity while it was greater than unity in the case of ANDSA-sugar derivatives because the elution occurred in the order of decreasing size of the homologous sugar derivatives in the former than in the later derivatives. The prepared ODM column was stable for more than a month of continuous use, a fact that allowed a good repeatability for intraday and interday analyzes.
Collapse
Affiliation(s)
- Vaithilingam Rajendiran
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Z El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
2
|
Lageveen-Kammeijer GSM, Rapp E, Chang D, Rudd PM, Kettner C, Zaia J. The minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for capillary electrophoresis. Glycobiology 2022; 32:580-587. [DOI: 10.1093/glycob/cwac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative to standardize the reporting of glycoanalytical methods and to assess their reproducibility. To date, the MIRAGE Commission has published several reporting guidelines that describe what information should be provided for sample preparation methods, mass spectrometry methods, liquid chromatography (LC) analysis, exoglycosidase digestions, glycan microarray methods and nuclear magnetic resonance methods. Here we present the first version of reporting guidelines for glyco(proteo)mics analysis by capillary electrophoresis (CE) for standardized and high-quality reporting of experimental conditions in the scientific literature. The guidelines cover all aspects of a glyco(proteo)mics CE experiment including sample preparation, CE operation mode (CZE, CGE, CEC, MEKC, cIEF, cITP), instrument configuration, capillary separation conditions, detection, data analysis, and experimental descriptors. These guidelines are linked to other MIRAGE guidelines and are freely available through the project website https://www.beilstein-institut.de/en/projects/mirage/guidelines/#ce_analysis (doi:10.3762/mirage.7).
Collapse
Affiliation(s)
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestrasse 20 – ZENIT, 39120, Magdeburg, Germany
| | - Deborah Chang
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, 715 Albany Street, Boston, MA 02118, USA
| | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | - Carsten Kettner
- Beilstein-Institut, Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, 715 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
3
|
Wang G, Zhao T, Chen L, Liu K, Fang R, Liu M. Fabrication of Elastic Macroporous Polymers with Enhanced Oil Absorbability and Antiwaxing Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10794-10802. [PMID: 32794401 DOI: 10.1021/acs.langmuir.0c01655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous polymers are of great interest in potential energy storage and environmental remediation applications. However, traditional fabrication methods are either time-consuming or energy-consuming and deteriorate the mechanical strength of polymer materials. In this study, polymerization-induced phase separation was used to realize the template-free fabrication of superflexible macroporous polymers. Since the solvent is also used as a porogen, this method can be widely used to synthesize several porous polymers by carefully choosing the solvent and monomer. Compared to nonstructured polymers, the prepared macroporous polymers exhibited enhanced mechanical strength, superflexibility, multicompressibility, and bending properties. Along with hydrophobicity/oleophilicity and macroporous structures, the as-prepared porous polymers demonstrated controllable oil absorbability and release; furthermore, after infusing with lubrication liquid, these materials can be used as antiwaxing materials. The elastic porous polymers prepared using this simple and universal method show great potential for various applications, including controlled drug release, antiwaxing, and lubrication.
Collapse
Affiliation(s)
- Guangyan Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Tianyi Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lie Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Kesong Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Ruochen Fang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China
- Research Institute of Frontier Science, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Hajba L, Guttman A. Recent Advances in Capillary Electrochromatography of Proteins and Carbohydrates in the Biopharmaceutical and Biomedical Field. Crit Rev Anal Chem 2020; 51:289-298. [PMID: 32022586 DOI: 10.1080/10408347.2020.1720589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Capillary electrochromatography (CEC) is a powerful hybrid separation technique that combines capillary electrophoresis and capillary chromatography, capable to address the analytical challenges of proteomics and glycomics. The focus of this paper is to review the recent developments in capillary electrochromatography of proteins and carbohydrates. The different column types applied in capillary electrochromatography such as packed bed, open tubular and monoliths are conferred in detail with respective separation examples. A comprehensive comparison is also given listing the mostly utilized coating methods, stationary phase materials and column preparation methods. The choice of porogenic solvent combinations for monolithic column fabrication is thoroughly discussed, paying close attention to the fine tuning options for the separation driving electroosmotic flow. Application examples of CEC in process analytical technology for the biopharmaceutical and biomarker discovery in the biomedical fields are also given.
Collapse
Affiliation(s)
- L Hajba
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - A Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary.,Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|
6
|
Poon CK, Tang O, Chen XM, Pham BTT, Gody G, Pollock CA, Hawkett BS, Perrier S. Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization. Biomacromolecules 2016; 17:965-73. [DOI: 10.1021/acs.biomac.5b01633] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cheuk Ka Poon
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Building F11, Sydney, NSW 2006, Australia
| | - Owen Tang
- Kolling
Institute of Medical Research, Royal North Shore Hospital and The University of Sydney, St. Leonards, NSW 2065, Australia
| | - Xin-Ming Chen
- Kolling
Institute of Medical Research, Royal North Shore Hospital and The University of Sydney, St. Leonards, NSW 2065, Australia
| | - Binh T. T. Pham
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Building F11, Sydney, NSW 2006, Australia
| | - Guillaume Gody
- Department
of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Carol A. Pollock
- Kolling
Institute of Medical Research, Royal North Shore Hospital and The University of Sydney, St. Leonards, NSW 2065, Australia
| | - Brian S. Hawkett
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Building F11, Sydney, NSW 2006, Australia
| | - Sébastien Perrier
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Building F11, Sydney, NSW 2006, Australia
- Department
of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Development of Monolithic Column Materials for the Separation and Analysis of Glycans. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Mai J, Abhyankar VV, Piccini ME, Olano JP, Willson R, Hatch AV. Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels. Biosens Bioelectron 2013; 54:435-41. [PMID: 24316449 DOI: 10.1016/j.bios.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/18/2022]
Abstract
We present advancements in microfluidic technology for rapid detection of as few as 10 rickettsial organisms in complex biological samples. An immuno-reactive filter, macroporous polyacrylamide monolith (PAM), fabricated within a microfluidic channel enhances solid-phase immuno-capture, staining and detection of targeted bacteria. Bacterial cells in samples flowing through the channel are forced to interact with the PAM filter surface due to size exclusion, overcoming common transport and kinetic limitations for rapid (min), high-efficiency (~100%) capture. In the process, targeted cells in sample volumes of 10 μl to >100 μl are concentrated within a sub-50 nl region at the PAM filter edge in the microchannel, thus concentrating them over 1000-fold. This significantly increases sensitivity, as the hydrophilic PAM also yields low non-specific immuno-fluorescence backgrounds with samples including serum, blood and non-targeted bacteria. The concentrated target cells are detected using fluorescently-labeled antibodies. With a single 2.0×2.0×0.3 mm PAM filter, as few as 10 rickettsial organisms per 100 µl of lysed blood sample can be analyzed within 60 min, as compared to hours or even days needed for conventional detection methods. This method is highly relevant to rapid, multiplexed, low-cost point of care diagnostics at early stages of infection where diagnostics providing more immediate and actionable test results are needed to improve patient outcomes and mitigate potential natural and non-natural outbreaks or epidemics of rickettsial diseases.
Collapse
Affiliation(s)
- Junyu Mai
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Vinay V Abhyankar
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Matthew E Piccini
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Juan P Olano
- University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Richard Willson
- University of Houston, 4800 Calhoun Road, Houston, TX 77004, USA
| | - Anson V Hatch
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA.
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
10
|
Safina G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: A comparison with conventional analytical techniques. A critical review. Anal Chim Acta 2012; 712:9-29. [DOI: 10.1016/j.aca.2011.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/07/2011] [Accepted: 11/04/2011] [Indexed: 12/16/2022]
|
11
|
Jang R, Kim KH, Zaidi SA, Cheong WJ, Moon MH. Analysis of phospholipids using an open-tubular capillary column with a monolithic layer of molecularly imprinted polymer in capillary electrochromatography-electrospray ionization-tandem mass spectrometry. Electrophoresis 2011; 32:2167-73. [DOI: 10.1002/elps.201100205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 11/11/2022]
|
12
|
Wu S, Sun L, Ma J, Yang K, Liang Z, Zhang L, Zhang Y. High throughput tryptic digestion via poly (acrylamide-co-methylenebisacrylamide) monolith based immobilized enzyme reactor. Talanta 2011; 83:1748-53. [DOI: 10.1016/j.talanta.2010.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/23/2010] [Accepted: 12/04/2010] [Indexed: 11/15/2022]
|
13
|
Protein glycosylation analysis with capillary-based electromigrative separation techniques. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12566-010-0018-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Chen JL, Hsieh KH. Polyacrylamide grafted on multi-walled carbon nanotubes for open-tubular capillary electrochromatography: Comparison with silica hydride and polyacrylate phase matrices. Electrophoresis 2010; 31:3937-48. [DOI: 10.1002/elps.201000339] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 2010; 397:3457-81. [PMID: 20225063 PMCID: PMC2911528 DOI: 10.1007/s00216-010-3532-z] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 12/28/2022]
Abstract
Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrometric detection. Moreover, derivatization steps such as permethylation aim at stabilizing sialic acid residues, enhancing mass-spectrometric sensitivity, and supporting detailed structural characterization by (tandem) mass spectrometry. Finally, many glycan labels serve as a linker for oligosaccharide attachment to surfaces or carrier proteins, thereby allowing interaction studies with carbohydrate-binding proteins. In this review, various aspects of glycan labeling, separation, and detection strategies are discussed.
Collapse
Affiliation(s)
- L. R. Ruhaak
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300RC Leiden, The Netherlands
| | - G. Zauner
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300RC Leiden, The Netherlands
| | - C. Huhn
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300RC Leiden, The Netherlands
| | - C. Bruggink
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300RC Leiden, The Netherlands
| | - A. M. Deelder
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300RC Leiden, The Netherlands
| | - M. Wuhrer
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
16
|
Recent advances in column for hydrophilic interaction capillary electrochromatography. Se Pu 2010; 28:284-90. [DOI: 10.3724/sp.j.1123.2010.00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Abstract
The concept of biocompatibility with reference to chromatographic stationary phases for separation of biomolecules (including proteins and peptides) is introduced. Biocompatible is a characteristic that indicates resistance to nonspecific adsorption of biomolecules and preservation of their structures and biochemical functions. Two types of biocompatible polymeric monoliths [i. e., polyacrylamide- and poly(meth)acrylate-based monoliths] used for protein and peptide separations are reviewed in detail, with emphasis on size exclusion, ion exchange, and hydrophobic interaction chromatographic modes. Biocompatible monoliths for enzyme reactors are also included. The two main synthetic approaches to produce biocompatible monoliths are summarized, i. e., surface modification of a monolith that is not inherently biocompatible and direct copolymerization of hydrophilic monomers to form a biocompatible monolith directly. Integration of polyethylene glycol into the poly(meth)acrylate monolith network is becoming popular for reduction of non-specific protein interactions.
Collapse
Affiliation(s)
- Yun Li
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | |
Collapse
|
18
|
Svec F. CEC: selected developments that caught my eye since the year 2000. Electrophoresis 2009; 30 Suppl 1:S68-82. [PMID: 19517503 DOI: 10.1002/elps.200900062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the last decade, a number of new developments have emerged in the field of CEC. This paper focuses only on monolithic columns prepared from synthetic polymers. Monolithic columns have become a well-established format of stationary phases for CEC immediately after their inception in the mid-1990s. They are readily prepared in situ from liquid precursors. Also, the control over both porous properties and surface chemistries is easy to achieve. These advantages make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. Since the number of papers concerned with just this single topic of polymer-based monolithic CEC columns is large, this overview describes only those approaches this author found interesting.
Collapse
Affiliation(s)
- Frantisek Svec
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8197, USA.
| |
Collapse
|
19
|
Dong X, Wu R, Dong J, Wu M, Zhu Y, Zou H. Recent progress of polar stationary phases in CEC and capillary liquid chromatography. Electrophoresis 2009; 30:141-54. [DOI: 10.1002/elps.200800412] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Wang X, Lü H, Lin X, Xie Z. Electrochromatographic characterization of methacrylate-based monolith with mixed mode of hydrophilic and weak electrostatic interactions by pressurized capillary electrochromatography. J Chromatogr A 2008; 1190:365-71. [DOI: 10.1016/j.chroma.2008.02.106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/21/2008] [Accepted: 02/29/2008] [Indexed: 11/24/2022]
|