1
|
Mohsen JJ, Mohsen MG, Jiang K, Landajuela A, Quinto L, Isaacs FJ, Karatekin E, Slavoff SA. Cellular function of the GndA small open reading frame-encoded polypeptide during heat shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601336. [PMID: 38979229 PMCID: PMC11230408 DOI: 10.1101/2024.06.29.601336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Over the past 15 years, hundreds of previously undiscovered bacterial small open reading frame (sORF)-encoded polypeptides (SEPs) of fewer than fifty amino acids have been identified, and biological functions have been ascribed to an increasing number of SEPs from intergenic regions and small RNAs. However, despite numbering in the dozens in Escherichia coli, and hundreds to thousands in humans, same-strand nested sORFs that overlap protein coding genes in alternative reading frames remain understudied. In order to provide insight into this enigmatic class of unannotated genes, we characterized GndA, a 36-amino acid, heat shock-regulated SEP encoded within the +2 reading frame of the gnd gene in E. coli K-12 MG1655. We show that GndA pulls down components of respiratory complex I (RCI) and is required for proper localization of a RCI subunit during heat shock. At high temperature GndA deletion (ΔGndA) cells exhibit perturbations in cell growth, NADH+/NAD ratio, and expression of a number of genes including several associated with oxidative stress. These findings suggest that GndA may function in maintenance of homeostasis during heat shock. Characterization of GndA therefore supports the nascent but growing consensus that functional, overlapping genes occur in genomes from viruses to humans.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
| | - Michael G. Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511
| | - Kevin Jiang
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
| | - Ane Landajuela
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
| | - Laura Quinto
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Farren J. Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
- Wu Tsai Institute, Yale University, New Haven, CT 06511
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), 75006 Paris, France
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| |
Collapse
|
2
|
Inchingolo MA, Diman A, Adamczewski M, Humphreys T, Jaquier-Gubler P, Curran JA. TP53BP1, a dual-coding gene, uses promoter switching and translational reinitiation to express a smORF protein. iScience 2023; 26:106757. [PMID: 37216125 PMCID: PMC10193022 DOI: 10.1016/j.isci.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The complexity of the metazoan proteome is significantly increased by the expression of small proteins (<100 aa) derived from smORFs within lncRNAs, uORFs, 3' UTRs and, reading frames overlapping the CDS. These smORF encoded proteins (SEPs) have diverse roles, ranging from the regulation of cellular physiological to essential developmental functions. We report the characterization of a new member of this protein family, SEP53BP1, derived from a small internal ORF that overlaps the CDS encoding 53BP1. Its expression is coupled to the utilization of an alternative, cell-type specific promoter coupled to translational reinitiation events mediated by a uORF in the alternative 5' TL of the mRNA. This uORF-mediated reinitiation at an internal ORF is also observed in zebrafish. Interactome studies indicate that the human SEP53BP1 associates with components of the protein turnover pathway including the proteasome, and the TRiC/CCT chaperonin complex, suggesting that it may play a role in cellular proteostasis.
Collapse
Affiliation(s)
- Marta A. Inchingolo
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Diman
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime Adamczewski
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculté de Médecine et Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Tom Humphreys
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph A. Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Jain N, Richter F, Adzhubei I, Sharp AJ, Gelb BD. Small open reading frames: a comparative genetics approach to validation. BMC Genomics 2023; 24:226. [PMID: 37127568 PMCID: PMC10152738 DOI: 10.1186/s12864-023-09311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Open reading frames (ORFs) with fewer than 100 codons are generally not annotated in genomes, although bona fide genes of that size are known. Newer biochemical studies have suggested that thousands of small protein-coding ORFs (smORFs) may exist in the human genome, but the true number and the biological significance of the micropeptides they encode remain uncertain. Here, we used a comparative genomics approach to identify high-confidence smORFs that are likely protein-coding. We identified 3,326 high-confidence smORFs using constraint within human populations and evolutionary conservation as additional lines of evidence. Next, we validated that, as a group, our high-confidence smORFs are conserved at the amino-acid level rather than merely residing in highly conserved non-coding regions. Finally, we found that high-confidence smORFs are enriched among disease-associated variants from GWAS. Overall, our results highlight that smORF-encoded peptides likely have important functional roles in human disease.
Collapse
Affiliation(s)
- Niyati Jain
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY, 10029, USA
- Present Address: Committee On Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Felix Richter
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Adzhubei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Vachlioti E, Ferikoglou S, Georgiou X, Karampatsis V, Afratis K, Bafiti V, Savard M, Papaioannou D, Katsila T, Gobeil F, Rassias G. Development of a multigram synthesis of the bradykinin receptor 2 agonist FR-190997 and analogs thereof. Arch Pharm (Weinheim) 2023; 356:e2200610. [PMID: 36720040 DOI: 10.1002/ardp.202200610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Using Fujisawa's B2R agonist FR-190997, we recently demonstrated for the first time that agonism at the bradykinin receptor type 2 (B2R) produces substantial antiproliferative effects. FR-190997 elicited an EC50 of 80 nM in the triple-negative breast cancer cell line MDA-MB-231, a much superior performance to that exhibited by most approved breast cancer drugs. Consequently, we initiated a program aiming primarily at synthesizing adequate quantities of FR-190997 to support further in vitro and in vivo studies toward its repurposing for various cancers and, in parallel, enable the generation of novel FR-190997 analogs for an SAR study. Prerequisite for this endeavor was to address the synthetic challenges associated with the FR-190997 scaffold, which the Fujisawa chemists had constructed in 20 steps, 13 of which required chromatographic purification. We succeeded in developing a 17-step synthesis amenable to late-stage diversification that eliminated all chromatography and enabled access to multigram quantities of FR-190997 and novel derivatives thereof, supporting further anticancer research based on B2R agonists.
Collapse
Affiliation(s)
- Eleanna Vachlioti
- Department of Chemistry, University of Patras, Rio University Campus, Patra, Greece
| | - Spyridon Ferikoglou
- Department of Chemistry, University of Patras, Rio University Campus, Patra, Greece
| | - Xenios Georgiou
- Department of Chemistry, University of Patras, Rio University Campus, Patra, Greece
| | - Vasilios Karampatsis
- Department of Chemistry, University of Patras, Rio University Campus, Patra, Greece
| | - Konstantinos Afratis
- Department of Chemistry, University of Patras, Rio University Campus, Patra, Greece
| | - Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Martin Savard
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Fernand Gobeil
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gerasimos Rassias
- Department of Chemistry, University of Patras, Rio University Campus, Patra, Greece
| |
Collapse
|
5
|
Mohaupt P, Roucou X, Delaby C, Vialaret J, Lehmann S, Hirtz C. The alternative proteome in neurobiology. Front Cell Neurosci 2022; 16:1019680. [PMID: 36467612 PMCID: PMC9712206 DOI: 10.3389/fncel.2022.1019680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 10/13/2023] Open
Abstract
Translation involves the biosynthesis of a protein sequence following the decoding of the genetic information embedded in a messenger RNA (mRNA). Typically, the eukaryotic mRNA was considered to be inherently monocistronic, but this paradigm is not in agreement with the translational landscape of cells, tissues, and organs. Recent ribosome sequencing (Ribo-seq) and proteomics studies show that, in addition to currently annotated reference proteins (RefProt), other proteins termed alternative proteins (AltProts), and microproteins are encoded in regions of mRNAs thought to be untranslated or in transcripts annotated as non-coding. This experimental evidence expands the repertoire of functional proteins within a cell and potentially provides important information on biological processes. This review explores the hitherto overlooked alternative proteome in neurobiology and considers the role of AltProts in pathological and healthy neuromolecular processes.
Collapse
Affiliation(s)
- Pablo Mohaupt
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Jérôme Vialaret
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
6
|
Na Z, Dai X, Zheng SJ, Bryant CJ, Loh KH, Su H, Luo Y, Buhagiar AF, Cao X, Baserga SJ, Chen S, Slavoff SA. Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID. Mol Cell 2022; 82:2900-2911.e7. [PMID: 35905735 PMCID: PMC9662605 DOI: 10.1016/j.molcel.2022.06.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
Abstract
Proteogenomic identification of translated small open reading frames has revealed thousands of previously unannotated, largely uncharacterized microproteins, or polypeptides of less than 100 amino acids, and alternative proteins (alt-proteins) that are co-encoded with canonical proteins and are often larger. The subcellular localizations of microproteins and alt-proteins are generally unknown but can have significant implications for their functions. Proximity biotinylation is an attractive approach to define the protein composition of subcellular compartments in cells and in animals. Here, we developed a high-throughput technology to map unannotated microproteins and alt-proteins to subcellular localizations by proximity biotinylation with TurboID (MicroID). More than 150 microproteins and alt-proteins are associated with subnuclear organelles. One alt-protein, alt-LAMA3, localizes to the nucleolus and functions in pre-rRNA transcription. We applied MicroID in a mouse model, validating expression of a conserved nuclear microprotein, and establishing MicroID for discovery of microproteins and alt-proteins in vivo.
Collapse
Affiliation(s)
- Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Shu-Jian Zheng
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Ken H Loh
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Yang Luo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Amber F Buhagiar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
7
|
Cao X, Khitun A, Harold CM, Bryant CJ, Zheng SJ, Baserga SJ, Slavoff SA. Nascent alt-protein chemoproteomics reveals a pre-60S assembly checkpoint inhibitor. Nat Chem Biol 2022; 18:643-651. [PMID: 35393574 PMCID: PMC9423127 DOI: 10.1038/s41589-022-01003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022]
Abstract
Many unannotated microproteins and alternative proteins (alt-proteins) are coencoded with canonical proteins, but few of their functions are known. Motivated by the hypothesis that alt-proteins undergoing regulated synthesis could play important cellular roles, we developed a chemoproteomic pipeline to identify nascent alt-proteins in human cells. We identified 22 actively translated alt-proteins or N-terminal extensions, one of which is post-transcriptionally upregulated by DNA damage stress. We further defined a nucleolar, cell-cycle-regulated alt-protein that negatively regulates assembly of the pre-60S ribosomal subunit (MINAS-60). Depletion of MINAS-60 increases the amount of cytoplasmic 60S ribosomal subunit, upregulating global protein synthesis and cell proliferation. Mechanistically, MINAS-60 represses the rate of late-stage pre-60S assembly and export to the cytoplasm. Together, these results implicate MINAS-60 as a potential checkpoint inhibitor of pre-60S assembly and demonstrate that chemoproteomics enables hypothesis generation for uncharacterized alt-proteins.
Collapse
Affiliation(s)
- Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT, USA.,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Alexandra Khitun
- Department of Chemistry, Yale University, New Haven, CT, USA.,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Cecelia M Harold
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Shu-Jian Zheng
- Department of Chemistry, Yale University, New Haven, CT, USA.,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA. .,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 2022; 32:243-258. [PMID: 34844857 PMCID: PMC8934435 DOI: 10.1016/j.tcb.2021.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
Collapse
|