1
|
Yin Y, Zhao SL, Rane D, Lin Z, Wu M, Peterson BR. Quantification of Binding of Small Molecules to Native Proteins Overexpressed in Living Cells. J Am Chem Soc 2024; 146:187-200. [PMID: 38118119 PMCID: PMC10910633 DOI: 10.1021/jacs.3c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The affinity and selectivity of small molecules for proteins drive drug discovery and development. We report a fluorescent probe cellular binding assay (FPCBA) for determination of these values for native (untagged) proteins overexpressed in living cells. This method uses fluorophores such as Pacific Blue (PB) linked to cell-permeable protein ligands to generate probes that rapidly and reversibly equilibrate with intracellular targets, as established by kinetic assays of cellular uptake and efflux. To analyze binding to untagged proteins, an internal ribosomal entry site (IRES) vector was employed that allows a single mRNA to encode both the protein target and a separate orthogonal fluorescent protein (mVenus). This enabled cellular uptake of the probe to be correlated with protein expression by flow cytometry, allowing measurement of cellular dissociation constants (Kd) of the probe. This approach was validated by studies of the binding of allosteric activators to eight different Protein Kinase C (PKC) isozymes. Full-length PKCs expressed in transiently transfected HEK293T cells were used to measure cellular Kd values of a probe comprising PB linked to the natural product phorbol via a carbamate. These values were further used to determine competitive binding constants (cellular Ki values) of the nonfluorescent phorbol ester PDBu and the anticancer agent bryostatin 1 for each isozyme. For some PKC-small molecule pairs, these cellular Ki values matched known biochemical Ki values, but for others, altered selectivity was observed in cells. This approach can facilitate quantification of interactions of small molecules with physiologically relevant native proteins.
Collapse
Affiliation(s)
- Yuwen Yin
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Serena Li Zhao
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Digamber Rane
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Zhihong Lin
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Meng Wu
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| |
Collapse
|