1
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023] Open
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
2
|
Wang J, Hua G, Cai G, Ma Y, Yang X, Zhang L, Li R, Liu J, Ma Q, Wu K, Zhao Y, Deng X. Genome-wide DNA methylation and transcriptome analyses reveal the key gene for wool type variation in sheep. J Anim Sci Biotechnol 2023; 14:88. [PMID: 37420295 DOI: 10.1186/s40104-023-00893-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Wool fibers are valuable materials for textile industry. Typical wool fibers are divided into medullated and non-medullated types, with the former generated from primary wool follicles and the latter by either primary or secondary wool follicles. The medullated wool is a common wool type in the ancestors of fine wool sheep before breeding. The fine wool sheep have a non-medullated coat. However, the critical period determining the type of wool follicles is the embryonic stage, which limits the phenotypic observation and variant contrast, making both selection and studies of wool type variation fairly difficult. RESULTS During the breeding of a modern fine (MF) wool sheep population with multiple-ovulation and embryo transfer technique, we serendipitously discovered lambs with ancestral-like coarse (ALC) wool. Whole-genome resequencing confirmed ALC wool lambs as a variant type from the MF wool population. We mapped the significantly associated methylation locus on chromosome 4 by using whole genome bisulfite sequencing signals, and in turn identified the SOSTDC1 gene as exons hypermethylated in ALC wool lambs compare to their half/full sibling MF wool lambs. Transcriptome sequencing found that SOSTDC1 was expressed dozens of times more in ALC wool lamb skin than that of MF and was at the top of all differentially expressed genes. An analogy with the transcriptome of coarse/fine wool breeds revealed that differentially expressed genes and enriched pathways at postnatal lamb stage in ALC/MF were highly similar to those at the embryonic stage in the former. Further experiments validated that the SOSTDC1 gene was specifically highly expressed in the nucleus of the dermal papilla of primary wool follicles. CONCLUSION In this study, we conducted genome-wide differential methylation site association analysis on differential wool type trait, and located the only CpG locus that strongly associated with primary wool follicle development. Combined with transcriptome analysis, SOSTDC1 was identified as the only gene at this locus that was specifically overexpressed in the primary wool follicle stem cells of ALC wool lamb skin. The discovery of this key gene and its epigenetic regulation contributes to understanding the domestication and breeding of fine wool sheep.
Collapse
Affiliation(s)
- Jiankui Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Guoying Hua
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Ganxian Cai
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Yuhao Ma
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Xue Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Letian Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Rui Li
- Jinfeng Animal Husbandry Group Co., Ltd., Chifeng, 024000, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Qing Ma
- Animal Science Institute of Ningxia Agriculture and Forestry Academy, Yinchuan, 750002, China
| | - Keliang Wu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Xuemei Deng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China.
| |
Collapse
|
3
|
Koliopoulos MG, Muhammad R, Roumeliotis TI, Beuron F, Choudhary JS, Alfieri C. Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling. Nat Commun 2022; 13:5075. [PMID: 36038598 PMCID: PMC9424243 DOI: 10.1038/s41467-022-32798-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023] Open
Abstract
Genes encoding the core cell cycle machinery are transcriptionally regulated by the MuvB family of protein complexes in a cell cycle-specific manner. Complexes of MuvB with the transcription factors B-MYB and FOXM1 activate mitotic genes during cell proliferation. The mechanisms of transcriptional regulation by these complexes are still poorly characterised. Here, we combine biochemical analysis and in vitro reconstitution, with structural analysis by cryo-electron microscopy and cross-linking mass spectrometry, to functionally examine these complexes. We find that the MuvB:B-MYB complex binds and remodels nucleosomes, thereby exposing nucleosomal DNA. This remodelling activity is supported by B-MYB which directly binds the remodelled DNA. Given the remodelling activity on the nucleosome, we propose that the MuvB:B-MYB complex functions as a pioneer transcription factor complex. In this work, we rationalise prior biochemical and cellular studies and provide a molecular framework of interactions on a protein complex that is key for cell cycle regulation.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Reyhan Muhammad
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Fabienne Beuron
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK.
| |
Collapse
|
4
|
A novel heterozygous missense variant of the ARID4A gene identified in Han Chinese families with schizophrenia-diagnosed siblings that interferes with DNA-binding activity. Mol Psychiatry 2022; 27:2777-2786. [PMID: 35365808 DOI: 10.1038/s41380-022-01530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022]
Abstract
ARID4A plays an important role in regulating gene expression and cell proliferation. ARID4A belongs to the AT-rich interaction domain (ARID)-containing family, and a PWWP domain immediately precedes its ARID region. The molecular mechanism and structural basis of ARID4A are largely unknown. Whole-exome sequencing (WES) revealed that a novel heterozygous missense variant, ARID4A c.1231 C > G (p.His411Asp), was associated with schizophrenia (SCZ) in this study. We determined the crystal structure of the PWWP-ARID tandem at 2.05 Å, revealing an unexpected mode in which ARID4A assembles with its PWWP and ARID from a structural and functional supramodule. Our results further showed that compared with the wild type, the p.His411Asp ARID mutant protein adopts a less compact conformation and exhibits a weaker dsDNA-binding ability. The p.His411Asp mutation decreased the number of cells that were arrested in the G0-G1 phase and caused more cells to progress to the G2-M phase. In addition, the missense mutation promoted the proliferation of HEK293T cells. In conclusion, our data provide evidence that ARID4A p.His411Asp could cause a conformational change in the ARID4A ARID domain, influence the DNA binding function, and subsequently disturb the cell cycle arrest in the G1 phase. ARID4A is likely a susceptibility gene for SCZ; thus, these findings provide new insight into the role of ARID4A in psychiatric disorders.
Collapse
|
5
|
Deák G, Cook AG. Missense Variants Reveal Functional Insights Into the Human ARID Family of Gene Regulators. J Mol Biol 2022; 434:167529. [PMID: 35257783 PMCID: PMC9077328 DOI: 10.1016/j.jmb.2022.167529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom. https://twitter.com/GauriDeak
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
6
|
Structural Insight into Chromatin Recognition by Multiple Domains of the Tumor Suppressor RBBP1. J Mol Biol 2021; 433:167224. [PMID: 34506790 DOI: 10.1016/j.jmb.2021.167224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023]
Abstract
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.
Collapse
|