1
|
Gupta A, Guptasarma P. E. coli cells advance into phase-separated (biofilm-simulating) extracellular polymeric substance containing DNA, HU, and lipopolysaccharide. J Bacteriol 2024:e0030924. [PMID: 39445815 DOI: 10.1128/jb.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
We have previously shown that the nucleoid-associated protein, HU, uses its DNA-binding surfaces to bind to bacterial outer-membrane lipopolysaccharide (LPS), causing HU to act as a glue aiding the adherence of DNA to bacteria, e.g., in biofilms. We have also previously shown that HU and DNA coacervate into a state of liquid-liquid phase separation (LLPS), within bacterial cells and also in vitro. Here, we show that HU and free LPS (which is ordinarily shed by bacteria) also condense into a state of phase separation. Coacervates of HU, DNA, and free LPS are less liquid-like than coacervates of HU and DNA. Escherichia coli cells bearing LPS on their surfaces are shown to adhere to (as well as advance into) coacervates of HU and DNA. HU appears to play a role, therefore, in maintaining both intracellular and extracellular states of phase separation with DNA that are compatible with LPS and LPS-bearing E. coli, with LPS determining the liquidity of the biofilm-simulating coacervate. IMPORTANCE Understanding the constitution and behavior of biofilms is crucial to understanding how to deal with persistent biofilms. This study, together with other recent studies from our group, elucidates a novel aspect of the extracellular polymeric substance (EPS) of Escherichia coli biofilms, by creating a simulacrum of the EPS and then demonstrating that its formation involves liquid-liquid phase separation (LLPS) of HU, DNA, and lipopolysaccharide (LPS) components, with LPS determining the liquidity of this EPS simulacrum. The findings provide insight into the nature of biofilms and into how the interplay of HU, DNA, and LPS could modulate the structural integrity and functional dynamics of biofilms.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
| |
Collapse
|
2
|
Beard S, Moya-Beltrán A, Silva-García D, Valenzuela C, Pérez-Acle T, Loyola A, Quatrini R. Pangenome-level analysis of nucleoid-associated proteins in the Acidithiobacillia class: insights into their functional roles in mobile genetic elements biology. Front Microbiol 2023; 14:1271138. [PMID: 37817747 PMCID: PMC10561277 DOI: 10.3389/fmicb.2023.1271138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
Mobile genetic elements (MGEs) are relevant agents in bacterial adaptation and evolutionary diversification. Stable appropriation of these DNA elements depends on host factors, among which are the nucleoid-associated proteins (NAPs). NAPs are highly abundant proteins that bind and bend DNA, altering its topology and folding, thus affecting all known cellular DNA processes from replication to expression. Even though NAP coding genes are found in most prokaryotic genomes, their functions in host chromosome biology and xenogeneic silencing are only known for a few NAP families. Less is known about the occurrence, abundance, and roles of MGE-encoded NAPs in foreign elements establishment and mobility. In this study, we used a combination of comparative genomics and phylogenetic strategies to gain insights into the diversity, distribution, and functional roles of NAPs within the class Acidithiobacillia with a special focus on their role in MGE biology. Acidithiobacillia class members are aerobic, chemolithoautotrophic, acidophilic sulfur-oxidizers, encompassing substantial genotypic diversity attributable to MGEs. Our search for NAP protein families (PFs) in more than 90 genomes of the different species that conform the class, revealed the presence of 1,197 proteins pertaining to 12 different NAP families, with differential occurrence and conservation across species. Pangenome-level analysis revealed 6 core NAP PFs that were highly conserved across the class, some of which also existed as variant forms of scattered occurrence, in addition to NAPs of taxa-restricted distribution. Core NAPs identified are reckoned as essential based on the conservation of genomic context and phylogenetic signals. In turn, various highly diversified NAPs pertaining to the flexible gene complement of the class, were found to be encoded in known plasmids or, larger integrated MGEs or, present in genomic loci associated with MGE-hallmark genes, pointing to their role in the stabilization/maintenance of these elements in strains and species with larger genomes. Both core and flexible NAPs identified proved valuable as markers, the former accurately recapitulating the phylogeny of the class, and the later, as seed in the bioinformatic identification of novel episomal and integrated mobile elements.
Collapse
Affiliation(s)
- Simón Beard
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ana Moya-Beltrán
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Danitza Silva-García
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Cesar Valenzuela
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Tomás Pérez-Acle
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Loyola
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
3
|
Gupta A, Venkatesh AR, Arora K, Guptasarma P. Avoidance of the use of tryptophan in buried chromosomal proteins as a mechanism for reducing photo/oxidative damage to genomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112733. [PMID: 37311303 DOI: 10.1016/j.jphotobiol.2023.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
In cells that are exposed to terrestrial sunlight, the indole moiety in the side chain of tryptophan (Trp) can suffer photo/oxidative damage (POD) by reactive oxygen species (ROS) and/or ultraviolet light (UV-B). Trp is oxidized to produce N-formylkynurenine (NFK), a UV-A-responsive photosensitizer that further degenerates into photosensitizers capable of generating ROS through exposure to visible light. Thus, Trp-containing proteins function as both victims, and perpetrators, of POD if they are not rapidly replaced through protein turnover. The literature indicates that protein turnover and DNA repair occur poorly in chromosomal interiors. We contend, therefore, that basic chromosomal proteins (BCPs) that are enveloped by DNA should have evolved to lack Trp residues in their amino acid sequences, since these could otherwise function as 'Trojan horse-type' DNA-damaging agents. Our global analyses of protein sequences demonstrates that BCPs consistently lack Trp residues, although DNA-binding proteins in general do not display such a lack. We employ HU-B (a wild-type, Trp-lacking bacterial BCP) and HU-B F47W (a mutant, Trp-containing form of the same bacterial BCP) to demonstrate that the possession of Trp is deleterious to BCPs and associated chromosomal DNA. Basically, we show that UV-B and UV-A (a) cause no POD in HU-B, but cause extensive POD in HU-B F47W (in vitro), as well as (b) only nominal DNA damage in bacteria expressing HU-B, but extensive DNA damage in bacteria expressing F47W HU-B (in vivo). Our results suggest that Trp-lacking BCPs could have evolved to reduce scope for protein-facilitated, sunlight-mediated damage of DNA by UV-A and visible light, within chromosomal interiors that are poorly serviced by protein turnover and DNA repair machinery.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Achuthan Raja Venkatesh
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
4
|
Herkenhoff ME, Battistini C, Praia AB, Rossini BC, dos Santos LD, Brödel O, Frohme M, Saad SMI. The combination of omics strategies to evaluate starter and probiotic strains in the Catharina sour Brazilian-style beer. Food Res Int 2023; 167:112704. [PMID: 37087270 DOI: 10.1016/j.foodres.2023.112704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Catharina sour, the first internationally recognized Brazilian beer, is characterized by fermentation with lactic acid bacteria (LAB), which may have probiotic potential, and the addition of fruit juice. This study aimed to evaluate the use of the starter Streptococcus thermophilus TH-4 (TH-4) and the probiotics Lacticaseibacillus paracasei F19 and 431, associated with Saccharomyces cerevisiae US-05, in the absence (control)/presence of passion fruit or peach juices. Evaluation proceeded during fermentation and storage by enumeration using pour-plate and qPCR; gene expressions of hop resistance; proteome by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS); and odor, flavor, and metabolome by Headspace Solid-Phase Microextraction (HS-SPME), coupled with the gas chromatography-mass spectrometry (GC-MS) analysis. We concluded that the strains studied are recommended for applications in sour beers, due to the presence of defense mechanisms like membrane adhesion and H + pump. Furthermore, HS-SPME/GC-MS indicated that the strains may contribute to the beer flavor and odor.
Collapse
|
5
|
Gupta A, Joshi A, Arora K, Mukhopadhyay S, Guptasarma P. The bacterial nucleoid-associated proteins, HU, and Dps, condense DNA into context-dependent biphasic or multiphasic complex coacervates. J Biol Chem 2023; 299:104637. [PMID: 36963493 PMCID: PMC10141540 DOI: 10.1016/j.jbc.2023.104637] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
The bacterial chromosome, known as its nucleoid, is an amorphous assemblage of globular nucleoprotein domains. It exists in a state of phase separation from the cell's cytoplasm, as an irregularly-shaped, membrane-less, intracellular compartment. This state (the nature of which remains largely unknown) is maintained through bacterial generations ad infinitum. Here, we show that HU, and Dps, two of the most abundant nucleoid-associated proteins (NAPs) of Escherichia coli, undergo spontaneous complex coacervation with different forms of DNA/RNA, both individually and in each other's presence, to cause accretion and compaction of DNA/RNA into liquid-liquid phase separated (LLPS) condensates in vitro. Upon mixing with nucleic acids, HU-A and HU-B form (a) bi-phasic heterotypic mixed condensates in which HU-B helps to lower the Csat of HU-A; and also (b) multi-phasic heterotypic condensates, with Dps, in which de-mixed domains display different contents of HU and Dps. We believe that these modes of complex coacervation that are seen in vitro can serve as models for the in vivo relationships amongst NAPs in nucleoids, involving local and global variations in the relative abundances of the different NAPs, especially in de-mixed sub-domains that are characterized by differing grades of phase separation. Our results clearly demonstrate some quantitative, and some qualitative, differences in the coacervating abilities of different NAPs with DNA, potentially explaining (i) why E. coli has two isoforms of HU, and (ii) why changes in the abundances of HU and Dps facilitate the lag, logarithmic and stationary phases of E. coli growth.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| | - Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
6
|
Yang W, Li Y, Boraschi D. Association between Microorganisms and Microplastics: How Does It Change the Host-Pathogen Interaction and Subsequent Immune Response? Int J Mol Sci 2023; 24:ijms24044065. [PMID: 36835476 PMCID: PMC9963316 DOI: 10.3390/ijms24044065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/22/2023] Open
Abstract
Plastic pollution is a significant problem worldwide because of the risks it poses to the equilibrium and health of the environment as well as to human beings. Discarded plastic released into the environment can degrade into microplastics (MPs) due to various factors, such as sunlight, seawater flow, and temperature. MP surfaces can act as solid scaffolds for microorganisms, viruses, and various biomolecules (such as LPS, allergens, and antibiotics), depending on the MP characteristics of size/surface area, chemical composition, and surface charge. The immune system has efficient recognition and elimination mechanisms for pathogens, foreign agents, and anomalous molecules, including pattern recognition receptors and phagocytosis. However, associations with MPs can modify the physical, structural, and functional characteristics of microbes and biomolecules, thereby changing their interactions with the host immune system (in particular with innate immune cells) and, most likely, the features of the subsequent innate/inflammatory response. Thus, exploring differences in the immune response to microbial agents that have been modified by interactions with MPs is meaningful in terms of identifying new possible risks to human health posed by anomalous stimulation of immune reactivities.
Collapse
Affiliation(s)
- Wenjie Yang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn, 80132 Naples, Italy
- Correspondence:
| |
Collapse
|
7
|
Ni M, Li W, Yuan B, Zou S, Cheng W, Yang K, Su J, Sun B, Su X. Micro-structured P-N junction surfaces: large-scale preparation, antifouling properties, and a synergistic antibacterial mechanism. J Mater Chem B 2023; 11:1312-1319. [PMID: 36651868 DOI: 10.1039/d2tb02258c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Constructing an antifouling surface cost-effectively is vitally important for many applications. Herein, a series of silicon substrates with micro-pyramid structures and p-n junctions were fabricated following a simple industrial processing flow, among which the p+n-Si substrate, fabricated through boron doping of a micro-pyramid structured n-type silicon wafer, exhibited the most pronounced antibacterial performance. Broad-spectrum bactericidal and bacteriostatic activity of p+n-Si under ambient light illumination was observed, with an inhibition ability of 73-100% compared to that of a bare glass against both airborne and contact-transmitted bacteria in the intensive care unit. The synergetic effect of mechanical rupture and electric injury was supposed to be responsible for the potent antibacterial activity. This work proposes a state-of-the-art concept that p-n junctions enhance the anti-infection ability of micro-structured surfaces and provide a promising strategy for fabricating practical antifouling surfaces with a large-size, a facile manufacturing procedure, and gentle working conditions, as well as broad-spectrum and physical antibacterial mechanisms.
Collapse
Affiliation(s)
- Mengfei Ni
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Wenwen Li
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China. .,Songshan Lake Materials Laboratory, Dongguan 523808, China.
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, China.
| | - Shuai Zou
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Wei Cheng
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Kai Yang
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Jiandong Su
- Suzhou Municipal Hospital, Suzhou 215008, China.
| | - Bingwei Sun
- Suzhou Municipal Hospital, Suzhou 215008, China.
| | - Xiaodong Su
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| |
Collapse
|
8
|
Stojkova P, Spidlova P. Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction. Front Cell Infect Microbiol 2022; 12:999737. [PMID: 36081771 PMCID: PMC9445418 DOI: 10.3389/fcimb.2022.999737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
HU protein is a member of nucleoid-associated proteins (NAPs) and is an important regulator of bacterial virulence, pathogenesis and survival. NAPs are mainly DNA structuring proteins that influence several molecular processes by binding the DNA. HU´s indispensable role in DNA-related processes in bacteria was described. HU protein is a necessary bacterial transcription factor and is considered to be a virulence determinant as well. Less is known about its direct role in host-pathogen interactions. The latest studies suggest that HU protein may be secreted outside bacteria and be a part of the extracellular matrix. Moreover, HU protein can be internalized in a host cell after bacterial infection. Its role in the host cell is not well described and further studies are extremely needed. Existing results suggest the involvement of HU protein in host cell immune response modulation in bacterial favor, which can help pathogens resist host defense mechanisms. A better understanding of the HU protein’s role in the host cell will help to effective treatment development.
Collapse
|
9
|
Small Prokaryotic DNA-Binding Proteins Protect Genome Integrity throughout the Life Cycle. Int J Mol Sci 2022; 23:ijms23074008. [PMID: 35409369 PMCID: PMC8999374 DOI: 10.3390/ijms23074008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Genomes of all organisms are persistently threatened by endogenous and exogenous assaults. Bacterial mechanisms of genome maintenance must provide protection throughout the physiologically distinct phases of the life cycle. Spore-forming bacteria must also maintain genome integrity within the dormant endospore. The nucleoid-associated proteins (NAPs) influence nucleoid organization and may alter DNA topology to protect DNA or to alter gene expression patterns. NAPs are characteristically multifunctional; nevertheless, Dps, HU and CbpA are most strongly associated with DNA protection. Archaea display great variety in genome organization and many inhabit extreme environments. As of yet, only MC1, an archaeal NAP, has been shown to protect DNA against thermal denaturation and radiolysis. ssDNA are intermediates in vital cellular processes, such as DNA replication and recombination. Single-stranded binding proteins (SSBs) prevent the formation of secondary structures but also protect the hypersensitive ssDNA against chemical and nuclease degradation. Ionizing radiation upregulates SSBs in the extremophile Deinococcus radiodurans.
Collapse
|
10
|
Barlow VL, Tsai YH. Acetylation at Lysine 86 of Escherichia coli HUβ Modulates the DNA-Binding Capability of the Protein. Front Microbiol 2022; 12:809030. [PMID: 35185833 PMCID: PMC8854993 DOI: 10.3389/fmicb.2021.809030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
DNA-binding protein HU is highly conserved in bacteria and has been implicated in a range of cellular processes and phenotypes. Like eukaryotic histones, HU is subjected to post-translational modifications. Specifically, acetylation of several lysine residues have been reported in both homologs of Escherichia coli HU. Here, we investigated the effect of acetylation at Lys67 and Lys86, located in the DNA binding-loop and interface of E. coli HUβ, respectively. Using the technique of genetic code expansion, homogeneous HUβ(K67ac) and HUβ(K86ac) protein units were obtained. Acetylation at Lys86 seemed to have negligible effects on protein secondary structure and thermal stability. Nevertheless, we found that this site-specific acetylation can regulate DNA binding by the HU homodimer but not the heterodimer. Intriguingly, while Lys86 acetylation reduced the interaction of the HU homodimer with short double-stranded DNA containing a 2-nucleotide gap or nick, it enhanced the interaction with longer DNA fragments and had minimal effect on a short, fully complementary DNA fragment. These results demonstrate the complexity of post-translational modifications in functional regulation, as well as indicating the role of lysine acetylation in tuning bacterial gene transcription and epigenetic regulation.
Collapse
Affiliation(s)
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Yu-Hsuan Tsai,
| |
Collapse
|
11
|
Arora K, Thakur B, Mrigwani A, Guptasarma P. N-Terminal Extensions Appear to Frustrate HU Heterodimer Formation by Strengthening Intersubunit Contacts and Blocking the Formation of a Heterotetrameric Intermediate. Biochemistry 2021; 60:1836-1852. [PMID: 34015918 DOI: 10.1021/acs.biochem.1c00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HU is a bacterial nucleoid-associated protein. Two homologues, known as HU-A, and HU-B, are found in Escherichia coli within which the early, late, and stationary phases of growth are dominated by HU-AA, HU-BB, and HU-AB dimers, respectively. Here, using genetic manipulation, mass spectrometry, spectroscopy, chromatography, and electrophoretic examination of glutaraldehyde-mediated cross-linking of subunits, in combination with experiments involving mixing, co-expression, unfolding, and refolding of HU chains, we show that the spontaneous formation of HU-AB heterodimers that is reported to occur upon mixing of wild-type HU-AA and HU-BB homodimers does not occur if chains possess N-terminal extensions. We show that N-terminal extensions interfere with the conversion of homodimers into heterodimers. We also show that heterodimers are readily formed at anticipated levels by chains possessing N-terminal extensions in vivo, when direct chain-chain interactions are facilitated through production of HU-A and HU-B chains from proximal genes located upon the same plasmid. From the data, two explanations emerge regarding the mechanism by which N-terminal extensions happen to adversely affect the conversion of homodimers into heterodimers. (1) The disappearance of the α-amino group at HU's N-terminus impacts the intersubunit stacking of β-sheets at HU's dimeric interface, reducing the ease with which subunits dissociate from each other. Simultaneously, (2) the presence of an N-terminal extension appears to sterically prevent the association of HU-AA and HU-BB homodimers into a critically required, heterotetrameric intermediate (within which homodimers could otherwise exchange subunits without releasing monomers into solution, by remaining physically associated with each other).
Collapse
Affiliation(s)
- Kanika Arora
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Arpita Mrigwani
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
12
|
Arora K, Thakur B, Gupta A, Guptasarma P. HU-AB simulacrum: Fusion of HU-B and HU-A into HU-B-A, a functional analog of the Escherichia coli HU-AB heterodimer. Biochem Biophys Res Commun 2021; 560:27-31. [PMID: 33964504 DOI: 10.1016/j.bbrc.2021.04.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
In enteric bacteria such as Escherichia coli, there are two homologs of the DNA-binding nucleoid associated protein (NAP) known as HU. The two homologs are known as HU-A and HU-B, and exist either in the form of homodimers (HU-AA, or HU-BB) or as heterodimers (HU-AB), with different propensities to form higher-order oligomers. The three different dimeric forms dominate different stages of bacterial growth, with the HU-AB heterodimer dominating cultures in the stationary phase. Due to similarities in their properties, and the facile equilibrium that exists between the dimeric forms, the dimers are difficult to purify away from each other. Although HU-AA and HU-BB can be purified through extensive ion-exchange chromatography, reestablishment of equilibrium interferes with the purification of the HU-AB heterodimer (which constitutes ∼90% of any population with equal numbers of HU-B and HU-A chains). Here, we report the creation of a functional analog of HU-AB that does not appear to partition to generate any minority populations of HU-AA or HU-BB. The analog was constructed through genetic fusion of the HU-B and HU-A chains into a single polypeptide (HU-B-A) with a glycine/serine-rich linker of 11 amino acids separating HU-B from HU-A, and a histidine tag at the N-terminus of HU-B. HU-B-A folds to bind 4-way junction DNA, and displays a significant tendency to form dimers (i.e., analogs of HU tetramers), and a higher thermodynamic stability than HU-BB or HU-AA, thus explaining why it dominates mixtures of HU-B and HU-A chains.
Collapse
Affiliation(s)
- Kanika Arora
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India
| | - Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India
| | - Archit Gupta
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India.
| |
Collapse
|