1
|
Pokidysheva EN, Redhair N, Ailsworth O, Page-McCaw P, Rollins-Smith L, Jamwal VS, Ohta Y, Bächinger HP, Murawala P, Flajnik M, Fogo AB, Abrahamson D, Hudson JK, Boudko SP, Hudson BG. Collagen IV of basement membranes: II. Emergence of collagen IV α345 enabled the assembly of a compact GBM as an ultrafilter in mammalian kidneys. J Biol Chem 2023; 299:105459. [PMID: 37977222 PMCID: PMC10746531 DOI: 10.1016/j.jbc.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.
Collapse
Affiliation(s)
- Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Neve Redhair
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Octavia Ailsworth
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick Page-McCaw
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Louise Rollins-Smith
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Yuko Ohta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Prayag Murawala
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA; Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Martin Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Agnes B Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dale Abrahamson
- Department of Cell Biology and Physiology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Julie K Hudson
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Summers JA, Yarbrough M, Liu M, McDonald WH, Hudson BG, Pastor-Pareja JC, Boudko SP. Collagen IV of basement membranes: IV. Adaptive mechanism of collagen IV scaffold assembly in Drosophila. J Biol Chem 2023; 299:105394. [PMID: 37890775 PMCID: PMC10694668 DOI: 10.1016/j.jbc.2023.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Collagen IV is an essential structural protein in all metazoans. It provides a scaffold for the assembly of basement membranes, a specialized form of extracellular matrix, which anchors and signals cells and provides microscale tensile strength. Defective scaffolds cause basement membrane destabilization and tissue dysfunction. Scaffolds are composed of α-chains that coassemble into triple-helical protomers of distinct chain compositions, which in turn oligomerize into supramolecular scaffolds. Chloride ions mediate the oligomerization via NC1 trimeric domains, forming an NC1 hexamer at the protomer-protomer interface. The chloride concentration-"chloride pressure"-on the outside of cells is a primordial innovation that drives the assembly and dynamic stabilization of collagen IV scaffolds. However, a Cl-independent mechanism is operative in Ctenophora, Ecdysozoa, and Rotifera, which suggests evolutionary adaptations to environmental or tissue conditions. An understanding of these exceptions, such as the example of Drosophila, could shed light on the fundamentals of how NC1 trimers direct the oligomerization of protomers into scaffolds. Here, we investigated the NC1 assembly of Drosophila. We solved the crystal structure of the NC1 hexamer, determined the chain composition of protomers, and found that Drosophila adapted an evolutionarily unique mechanism of scaffold assembly that requires divalent cations. By studying the Drosophila case we highlighted the mechanistic role of chloride pressure for maintaining functionality of the NC1 domain in humans. Moreover, we discovered that the NC1 trimers encode information for homing protomers to distant tissue locations, providing clues for the development of protein replacement therapy for collagen IV genetic diseases.
Collapse
Affiliation(s)
- Jacob A Summers
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madison Yarbrough
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Min Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Billy G Hudson
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Sergei P Boudko
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Boudko SP, Pedchenko VK, Pokidysheva EN, Budko AM, Baugh R, Coates PT, Fidler AL, Hudson HM, Ivanov SV, Luer C, Pedchenko T, Preston RL, Rafi M, Vanacore R, Bhave G, Hudson JK, Hudson BG. Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds. J Biol Chem 2023; 299:105318. [PMID: 37797699 PMCID: PMC10656227 DOI: 10.1016/j.jbc.2023.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121-α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl- activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl- stabilizes the hexamer structure. Whether this Cl--dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl- in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl- stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl- also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or "chloride pressure" dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.
Collapse
Affiliation(s)
- Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| | - Vadim K Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Rachel Baugh
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick Toby Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, Australia
| | - Aaron L Fidler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather M Hudson
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sergey V Ivanov
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carl Luer
- Mote Marine Laboratory, Sarasota, Florida, USA
| | - Tetyana Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert L Preston
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mohamed Rafi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roberto Vanacore
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julie K Hudson
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Kuang H, Liu J, Jia XY, Cui Z, Zhao MH. Autoimmunity in Anti-Glomerular Basement Membrane Disease: A Review of Mechanisms and Prospects for Immunotherapy. Am J Kidney Dis 2023; 81:90-99. [PMID: 36334986 DOI: 10.1053/j.ajkd.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/10/2022] [Indexed: 11/06/2022]
Abstract
Anti-glomerular basement membrane (anti-GBM) disease is an organ-specific autoimmune disorder characterized by autoantibodies against the glomerular and alveolar basement membranes, leading to rapidly progressive glomerulonephritis and severe alveolar hemorrhage. The noncollagenous domain of the α3 chain of type IV collagen, α3(IV)NC1, contains the main target autoantigen in this disease. Epitope mapping studies of α3(IV)NC1 have identified several nephritogenic epitopes and critical residues that bind to autoantibodies and trigger anti-GBM disease. The discovery of novel target antigens has revealed the heterogeneous nature of this disease. In addition, both epitope spreading and mimicry have been implicated in the pathogenesis of anti-GBM disease. Epitope spreading refers to the development of autoimmunity to new autoepitopes, thus worsening disease progression, whereas epitope mimicry, which occurs via sharing of critical residues with microbial peptides, can initiate autoimmunity. An understanding of these autoimmune responses may open opportunities to explore potential new therapeutic approaches for this disease. We review how current advances in epitope mapping, identification of novel autoantigens, and the phenomena of epitope spreading and mimicry have heightened the understanding of autoimmunity in the pathogenesis of anti-GBM disease, and we discuss prospects for immunotherapy.
Collapse
Affiliation(s)
- Huang Kuang
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Liu
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Bond PS, Cowtan KD. ModelCraft: an advanced automated model-building pipeline using Buccaneer. Acta Crystallogr D Struct Biol 2022; 78:1090-1098. [PMID: 36048149 PMCID: PMC9435595 DOI: 10.1107/s2059798322007732] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023] Open
Abstract
Interactive model building can be a difficult and time-consuming step in the structure-solution process. Automated model-building programs such as Buccaneer often make it quicker and easier by completing most of the model in advance. However, they may fail to do so with low-resolution data or a poor initial model or map. The Buccaneer pipeline is a relatively simple program that iterates Buccaneer with REFMAC to refine the model and update the map. A new pipeline called ModelCraft has been developed that expands on this to include shift-field refinement, machine-learned pruning of incorrect residues, classical density modification, addition of water and dummy atoms, building of nucleic acids and final rebuilding of side chains. Testing was performed on 1180 structures solved by experimental phasing, 1338 structures solved by molecular replacement using homologues and 2030 structures solved by molecular replacement using predicted AlphaFold models. Compared with the previous Buccaneer pipeline, ModelCraft increased the mean completeness of the protein models in the experimental phasing cases from 91% to 95%, the molecular-replacement cases from 50% to 78% and the AlphaFold cases from 82% to 91%.
Collapse
Affiliation(s)
- Paul S. Bond
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Kevin D. Cowtan
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Gibson JT, Sadeghi-Alavijeh O, Gale DP, Rothe H, Savige J. Pathogenicity of missense variants affecting the collagen IV α5 carboxy non-collagenous domain in X-linked Alport syndrome. Sci Rep 2022; 12:11257. [PMID: 35789182 PMCID: PMC9253329 DOI: 10.1038/s41598-022-14928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
X-linked Alport syndrome is a genetic kidney disease caused by pathogenic COL4A5 variants, but little is known of the consequences of missense variants affecting the NC1 domain of the corresponding collagen IV α5 chain. This study examined these variants in a normal (gnomAD) and other databases (LOVD, Clin Var and 100,000 Genomes Project) to determine their pathogenicity and clinical significance. Males with Cys substitutions in the collagen IV α5 NC1 domain reported in LOVD (n = 25) were examined for typical Alport features, including age at kidney failure. All NC1 variants in LOVD (n = 86) were then assessed for structural damage using an online computational tool, Missense3D. Variants in the ClinVar, gnomAD and 100,000 Genomes Project databases were also examined for structural effects. Predicted damage associated with NC1 substitutions was then correlated with the level of conservation of the affected residues. Cys substitutions in males were associated with the typical features of X-linked Alport syndrome, with a median age at kidney failure of 31 years. NC1 substitutions predicted to cause structural damage were overrepresented in LOVD (p < 0.001), and those affecting Cys residues or 'buried' Gly residues were more common than expected (both p < 0.001). Most NC1 substitutions in gnomAD (88%) were predicted to be structurally-neutral. Substitutions affecting conserved residues resulted in more structural damage than those affecting non-conserved residues (p < 0.001). Many pathogenic missense variants affecting the collagen IV α5 NC1 domain have their effect through molecular structural damage and 3D modelling is a useful tool in their assessment.
Collapse
Affiliation(s)
- Joel T Gibson
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Omid Sadeghi-Alavijeh
- Department of Renal Medicine, University College London, London, UK
- Genomics England, Queen Mary University of London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
- Genomics England, Queen Mary University of London, London, UK
| | - Hansjörg Rothe
- Centre for Nephrology and Metabolic Disorders, 02943, Weisswasser, Germany
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC, 3050, Australia.
- Genomics England, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Boudko SP, Pokidysheva E, Hudson BG. Prospective collagen IVα345 therapies for Alport syndrome. Curr Opin Nephrol Hypertens 2022; 31:213-220. [PMID: 35283436 PMCID: PMC9159491 DOI: 10.1097/mnh.0000000000000789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In Alport syndrome, over 1,700 genetic variants in the COL4A3, COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 scaffold - an essential component of the glomerular basement membrane (GBM). Therapies are limited to treatment with Angiotensin-Converting enzyme (ACE) inhibitors to slow progression of the disease. Here, we review recent progress in therapy development to replace the scaffold or restore its function. RECENT FINDINGS Multiple approaches emerged recently for development of therapies that target different stages of production and assembly of the collagen IVα345 scaffold in the GBM. These approaches are based on (1) recent advances in technologies allowing to decipher pathogenic mechanisms that underlie scaffold assembly and dysfunction, (2) development of DNA editing tools for gene therapy, (3) RNA splicing interference, and (4) control of mRNA translation. SUMMARY There is a growing confidence that these approaches will ultimately provide cure for Alport patients. The development of therapy will be accelerated by studies that provide a deeper understanding of mechanisms that underlie folding, assembly, and function of the collagen IVα345 scaffold.
Collapse
Affiliation(s)
- Sergei P. Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G. Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
8
|
|
9
|
Collagen IV α345 dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly. J Biol Chem 2021; 296:100592. [PMID: 33775696 PMCID: PMC8099640 DOI: 10.1016/j.jbc.2021.100592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture’s disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers. Chloride ions, together with sulfilimine crosslinks, stabilized the assembled hexamer. Furthermore, the chloride ion–dependent assembly revealed the conformational plasticity of the loop-crevice-loop bioactive sites, a critical property underlying bioactivity and pathogenesis. We explored the native mechanism by expressing recombinant α345 miniprotomers in the cell culture and characterizing the expressed proteins. Our findings revealed NC1-directed trimerization, forming protomers inside the cell; hexamerization, forming scaffolds outside the cell; and a Cl gradient–signaled hexamerization. This assembly detail, along with a crystal structure, provides a framework for understanding hexamer dysfunction. Restoration of the native conformation of bioactive sites and α345 hexamer replacement are prospective approaches to therapeutic intervention.
Collapse
|
10
|
Pokidysheva EN, Seeger H, Pedchenko V, Chetyrkin S, Bergmann C, Abrahamson D, Cui ZW, Delpire E, Fervenza FC, Fidler AL, Fogo AB, Gaspert A, Grohmann M, Gross O, Haddad G, Harris RC, Kashtan C, Kitching AR, Lorenzen JM, McAdoo S, Pusey CD, Segelmark M, Simmons A, Voziyan PA, Wagner T, Wüthrich RP, Zhao MH, Boudko SP, Kistler AD, Hudson BG. Collagen IV α345 dysfunction in glomerular basement membrane diseases. I. Discovery of a COL4A3 variant in familial Goodpasture's and Alport diseases. J Biol Chem 2021; 296:100590. [PMID: 33774048 PMCID: PMC8100070 DOI: 10.1016/j.jbc.2021.100590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Diseases of the glomerular basement membrane (GBM), such as Goodpasture’s disease (GP) and Alport syndrome (AS), are a major cause of chronic kidney failure and an unmet medical need. Collagen IVα345 is an important architectural element of the GBM that was discovered in previous research on GP and AS. How this collagen enables GBM to function as a permselective filter and how structural defects cause renal failure remain an enigma. We found a distinctive genetic variant of collagen IVα345 in both a familial GP case and four AS kindreds that provided insights into these mechanisms. The variant is an 8-residue appendage at the C-terminus of the α3 subunit of the α345 hexamer. A knock-in mouse harboring the variant displayed GBM abnormalities and proteinuria. This pathology phenocopied AS, which pinpointed the α345 hexamer as a focal point in GBM function and dysfunction. Crystallography and assembly studies revealed underlying hexamer mechanisms, as described in Boudko et al. and Pedchenko et al. Bioactive sites on the hexamer surface were identified where pathogenic pathways of GP and AS converge and, potentially, that of diabetic nephropathy (DN). We conclude that the hexamer functions include signaling and organizing macromolecular complexes, which enable GBM assembly and function. Therapeutic modulation or replacement of α345 hexamer could therefore be a potential treatment for GBM diseases, and this knock-in mouse model is suitable for developing gene therapies.
Collapse
Affiliation(s)
- Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harald Seeger
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Vadim Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergei Chetyrkin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carsten Bergmann
- Department of Medicine and Nephrology, University Hospital Freiburg, Freiburg, Germany; Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Dale Abrahamson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhao Wei Cui
- Renal Division, Peking University First Hospital, Beijing, PR China
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron L Fidler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Maik Grohmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - George Haddad
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Clifford Kashtan
- Division of Pediatric Nephrology, University of Minnesota Medical School and Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department Medicine, Nephrology, Monash Health, Clayton, VIC, Australia
| | - Johan M Lorenzen
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Stephen McAdoo
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Marten Segelmark
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Alicia Simmons
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul A Voziyan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timo Wagner
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Rudolf P Wüthrich
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, PR China
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andreas D Kistler
- Department of Internal Medicine, Kantonsspital Frauenfeld, Frauenfeld, Switzerland
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|