1
|
Song I, Jeong Y, Yun JK, Lee J, Yang H, Park Y, Kim S, Hong S, Lee PC, Lee GD, Jang S. TIPRL Regulates Stemness and Survival in Lung Cancer Stem Cells through CaMKK2-CaMK4-CREB Feedback Loop Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406309. [PMID: 39076120 PMCID: PMC11423089 DOI: 10.1002/advs.202406309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Frequent recurrence and metastasis caused by cancer stem cells (CSCs) are major challenges in lung cancer treatment. Therefore, identifying and characterizing specific CSC targets are crucial for the success of prospective targeted therapies. In this study, it is found that upregulated TOR Signaling Pathway Regulator-Like (TIPRL) in lung CSCs causes sustained activation of the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) signaling pathway by binding to CaMKK2, thereby maintaining stemness and survival. CaMKK2-mediated activation of CaM kinase 4 (CaMK4) leads to phosphorylation of cAMP response element-binding protein (CREB) at Ser129 and Ser133, which is necessary for its maximum activation and the downstream constitutive expression of its target genes (Bcl2 and HMG20A). TIPRL depletion sensitizes lung CSCs to afatinib-induced cell death and reduces distal metastasis of lung cancer in vivo. It is determined that CREB activates the transcription of TIPRL in lung CSCs. The positive feedback loop consisting of CREB and TIPRL induces the sustained activation of the CaMKK2-CaMK4-CREB axis as a driving force and upregulates the expression of stemness- and survival-related genes, promoting tumorigenesis in patients with lung cancer. Thus, TIPRL and the CaMKK2 signaling axis may be promising targets for overcoming drug resistance and reducing metastasis in lung cancer.
Collapse
Affiliation(s)
- In‐Sung Song
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Yu‐Jeong Jeong
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jae Kwang Yun
- Department of Thoracic and Cardiovascular SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jimin Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Hae‐Jun Yang
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
| | - Young‐Ho Park
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Sun‐Uk Kim
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Seung‐Mo Hong
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Peter C.W. Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Geun Dong Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Sung‐Wuk Jang
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| |
Collapse
|
2
|
Das MK, Savidge B, Pearl JE, Yates T, Miles G, Pareek M, Haldar P, Cooper AM. Altered hepatic metabolic landscape and insulin sensitivity in response to pulmonary tuberculosis. PLoS Pathog 2024; 20:e1012565. [PMID: 39331683 PMCID: PMC11463835 DOI: 10.1371/journal.ppat.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/09/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Chronic inflammation triggers development of metabolic disease, and pulmonary tuberculosis (TB) generates chronic systemic inflammation. Whether TB induced-inflammation impacts metabolic organs and leads to metabolic disorder is ill defined. The liver is the master regulator of metabolism and to determine the impact of pulmonary TB on this organ we undertook an unbiased mRNA and protein analyses of the liver in mice with TB and reanalysed published data on human disease. Pulmonary TB led to upregulation of genes in the liver related to immune signalling and downregulation of genes encoding metabolic processes. In liver, IFN signalling pathway genes were upregulated and this was reflected in increased biochemical evidence of IFN signalling, including nuclear location of phosphorylated Stat-1 in hepatocytes. The liver also exhibited reduced expression of genes encoding the gluconeogenesis rate-limiting enzymes Pck1 and G6pc. Phosphorylation of CREB, a transcription factor controlling gluconeogenesis was drastically reduced in the livers of mice with pulmonary TB as was phosphorylation of other glucose metabolism-related kinases, including GSK3a, AMPK, and p42. In support of the upregulated IFN signalling being linked to the downregulated metabolic functions in the liver, we found suppression of gluconeogenic gene expression and reduced CREB phosphorylation in hepatocyte cell lines treated with interferons. The impact of reduced gluconeogenic gene expression in the liver was seen when infected mice were less able to convert pyruvate, a gluconeogenesis substrate, to the same extent as uninfected mice. Infected mice also showed evidence of reduced systemic and hepatic insulin sensitivity. Similarly, in humans with TB, we found that changes in a metabolite-based signature of insulin resistance correlates temporally with successful treatment of active TB and with progression to active TB following exposure. These data support the hypothesis that TB drives interferon-mediated alteration of hepatic metabolism resulting in reduced gluconeogenesis and drives systemic reduction of insulin sensitivity.
Collapse
Affiliation(s)
- Mrinal K. Das
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Ben Savidge
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - John E. Pearl
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Gareth Miles
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, United Kingdom
| | - Manish Pareek
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- Department of Infection and HIV Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Pranabashis Haldar
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- NIHR Respiratory Biomedical Research Centre, Leicester, Glenfield Hospital, Groby Road, Leicester, United Kingdom
| | - Andrea M. Cooper
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
3
|
Wu CG, Balakrishnan VK, Merrill RA, Parihar PS, Konovolov K, Chen YC, Xu Z, Wei H, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Chung WK, Honkanen RE, Suzuki A, Huang X, Strack S, Xing Y. B56δ long-disordered arms form a dynamic PP2A regulation interface coupled with global allostery and Jordan's syndrome mutations. Proc Natl Acad Sci U S A 2024; 121:e2310727120. [PMID: 38150499 PMCID: PMC10769853 DOI: 10.1073/pnas.2310727120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Ronald A. Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA52242
| | - Hui Wei
- The Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY10027
| | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA02215
| | | | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02215
| | - Richard E. Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Xuhui Huang
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| |
Collapse
|
4
|
Chiou JT, Wu YY, Lee YC, Chang LS. BCL2L1 inhibitor A-1331852 inhibits MCL1 transcription and triggers apoptosis in acute myeloid leukemia cells. Biochem Pharmacol 2023; 215:115738. [PMID: 37562509 DOI: 10.1016/j.bcp.2023.115738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
BH3 mimetics exert anticancer activity by inhibiting anti-apoptotic BCL2 proteins. However, accumulating evidence indicates that the off-target effects of these drugs tightly modulates their anticancer activities. In this study, we investigated whether the BCL2L1 inhibitor A-1331852 induced the death of U937 acute myeloid leukemia (AML) cells through a non-BCL2L1-targeted effect. A-1331852-induced apoptosis in U937 cells was characterized by increased ROS production, downregulation of MCL1, and loss of mitochondrial membrane potential. Ectopic expression of MCL1 alleviated A-1331852-induced mitochondrial depolarization and cytotoxicity in U937 cells. A-1331852-induced ROS production increased p38 MAPK phosphorylation and inhibited MCL1 transcription. Inhibition of p38 MAPK activation restored MCL1 expression in A-1331852-treated cells. A-1331852 triggered p38 MAPK-mediated Cullin 3 downregulation, which in turn increased PP2Acα expression, thereby reducing CREB phosphorylation. A-1331852 reduced the binding of CREB to the MCL1 promoter, leading to the inhibition of CREB-mediated MCL1 transcription. Furthermore, A-1331852 acted synergistically with the BCL2 inhibitor ABT-199 to induce U937 and ABT-199-resistant U937 cell death by inhibiting MCL1 expression. A similar phenomenon caused A-1331852-induced MCL1 downregulation and cytotoxicity in AML HL-60 cells. Collectively, our data suggest that A-1331852 shows an off-target effect of inhibiting MCL1 transcription, ultimately leading to U937 and HL-60 cell death.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Ying Wu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
5
|
Wu CG, Balakrishnan VK, Parihar PS, Konovolov K, Chen YC, Merrill RA, Wei H, Carragher B, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Honkanen R, Chung WK, Suzuki A, Strack S, Huang X, Xing Y. Extended regulation interface coupled to the allosteric network and disease mutations in the PP2A-B56δ holoenzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.530109. [PMID: 37066309 PMCID: PMC10103954 DOI: 10.1101/2023.03.09.530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Molecular and Cellular Pharmacology program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wei
- New York Structural biology Center, New York, NY 10027, USA
| | | | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Qiang Cui
- Department of Chemistry, Metcalf Center for Science & Engineering, Boston University, Boston, MA 02215, USA
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Richard Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Xuhui Huang
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| |
Collapse
|