1
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
2
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
3
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
4
|
Barbé L, Lam S, Holub A, Faghihmonzavi Z, Deng M, Iyer R, Finkbeiner S. AutoComet: A fully automated algorithm to quickly and accurately analyze comet assays. Redox Biol 2023; 62:102680. [PMID: 37001328 PMCID: PMC10090439 DOI: 10.1016/j.redox.2023.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023] Open
Abstract
DNA damage is a common cellular feature seen in cancer and neurodegenerative disease, but fast and accurate methods for quantifying DNA damage are lacking. Comet assays are a biochemical tool to measure DNA damage based on the migration of broken DNA strands towards a positive electrode, which creates a quantifiable 'tail' behind the cell. However, a major limitation of this approach is the time needed for analysis of comets in the images with available open-source algorithms. The requirement for manual curation and the laborious pre- and post-processing steps can take hours to days. To overcome these limitations, we developed AutoComet, a new open-source algorithm for comet analysis that utilizes automated comet segmentation and quantification of tail parameters. AutoComet first segments and filters comets based on size and intensity and then filters out comets without a well-connected head and tail, which significantly increases segmentation accuracy. Because AutoComet is fully automated, it minimizes curator bias and is scalable, decreasing analysis time over ten-fold, to less than 3 s per comet. AutoComet successfully detected statistically significant differences in tail parameters between cells with and without induced DNA damage, and was more comparable to the results of manual curation than other open-source software analysis programs. We conclude that the AutoComet algorithm provides a fast, unbiased and accurate method to quantify DNA damage that avoids the inherent limitations of manual curation and will significantly improve the ability to detect DNA damage.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Austin Holub
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Zohreh Faghihmonzavi
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Minnie Deng
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Rajshri Iyer
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Hanson EK, Whelan RJ. Application of the Nicoya OpenSPR to Studies of Biomolecular Binding: A Review of the Literature from 2016 to 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:4831. [PMID: 37430747 DOI: 10.3390/s23104831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The Nicoya OpenSPR is a benchtop surface plasmon resonance (SPR) instrument. As with other optical biosensor instruments, it is suitable for the label-free interaction analysis of a diverse set of biomolecules, including proteins, peptides, antibodies, nucleic acids, lipids, viruses, and hormones/cytokines. Supported assays include affinity/kinetics characterization, concentration analysis, yes/no assessment of binding, competition studies, and epitope mapping. OpenSPR exploits localized SPR detection in a benchtop platform and can be connected with an autosampler (XT) to perform automated analysis over an extended time period. In this review article, we provide a comprehensive survey of the 200 peer-reviewed papers published between 2016 and 2022 that use the OpenSPR platform. We highlight the range of biomolecular analytes and interactions that have been investigated using the platform, provide an overview on the most common applications for the instrument, and point out some representative research that highlights the flexibility and utility of the instrument.
Collapse
Affiliation(s)
- Eliza K Hanson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Brettrager EJ, Cuya SM, Tibbs ZE, Zhang J, Falany CN, Aller SG, van Waardenburg RCAM. N-terminal domain of tyrosyl-DNA phosphodiesterase I regulates topoisomerase I-induced toxicity in cells. Sci Rep 2023; 13:1377. [PMID: 36697463 PMCID: PMC9876888 DOI: 10.1038/s41598-023-28564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes phosphodiester-linked adducts from both ends of DNA. This includes the topoisomerase I (TOP1)-DNA covalent reaction intermediate that is the target of the camptothecin class of chemotherapeutics. Tdp1 two-step catalysis is centered on the formation of a Tdp1-DNA covalent complex (Tdp1cc) using two catalytic histidines. Here, we examined the role of the understudied, structurally undefined, and poorly conserved N-terminal domain (NTD) of Tdp1 in context of full-length protein in its ability to remove TOP1cc in cells. Using toxic Tdp1 mutants, we observed that the NTD is critical for Tdp1's ability to remove TOP1-DNA adducts in yeast. Full-length and N-terminal truncated Tdp1 mutants showed similar expression levels and cellular distribution yet an inversed TOP1-dependent toxicity. Single turnover catalysis was significantly different between full-length and truncated catalytic mutants but not wild-type enzyme, suggesting that Tdp1 mutants depend on the NTD for catalysis. These observations suggest that the NTD plays a critical role in the regulation of Tdp1 activity and interaction with protein-DNA adducts such as TOP1cc in cells. We propose that the NTD is a regulatory domain and coordinates stabilization of the DNA-adducted end within the catalytic pocket to access the phosphodiester linkage for hydrolysis.
Collapse
Affiliation(s)
- Evan J Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Zachary E Tibbs
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Cardiothoracic Surgery - Ascension Medical Group, 10580 North Meridian St. Ste 105, Carmel, IN, 46290, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|