1
|
Kaye EG, Basavaraju K, Nelson GM, Zomer HD, Roy D, Joseph II, Rajabi-Toustani R, Qiao H, Adelman K, Reddi PP. RNA polymerase II pausing is essential during spermatogenesis for appropriate gene expression and completion of meiosis. Nat Commun 2024; 15:848. [PMID: 38287033 PMCID: PMC10824759 DOI: 10.1038/s41467-024-45177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double-strand break (DSB) formation, and disruption of meiotic gene expression and DSB repair in germ cells lacking NELF.
Collapse
Affiliation(s)
- Emily G Kaye
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kavyashree Basavaraju
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Debarun Roy
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Irene Infancy Joseph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
2
|
Ke H, Liu K, Jiao B, Zhao L. Implications of TDP-43 in non-neuronal systems. Cell Commun Signal 2023; 21:338. [PMID: 37996849 PMCID: PMC10666381 DOI: 10.1186/s12964-023-01336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a versatile RNA/DNA-binding protein with multifaceted processes. While TDP-43 has been extensively studied in the context of degenerative diseases, recent evidence has also highlighted its crucial involvement in diverse life processes beyond neurodegeneration. Here, we mainly reviewed the function of TDP-43 in non-neurodegenerative physiological and pathological processes, including spermatogenesis, embryonic development, mammary gland development, tumor formation, and viral infection, highlighting its importance as a key regulatory factor for the maintenance of normal functions throughout life. TDP-43 exhibits diverse and sometimes opposite functionality across different cell types through various mechanisms, and its roles can shift at distinct stages within the same biological system. Consequently, TDP-43 operates in both a context-dependent and a stage-specific manner in response to a variety of internal and external stimuli. Video Abstract.
Collapse
Affiliation(s)
- Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Kang Liu
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| |
Collapse
|
3
|
Nie X, Xu Q, Xu C, Chen F, Wang Q, Qin D, Wang R, Gao Z, Lu X, Yang X, Wu Y, Gu C, Xie W, Li L. Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation. Nat Commun 2023; 14:4275. [PMID: 37460529 DOI: 10.1038/s41467-023-39924-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Zygotic genome activation (ZGA) is essential for early embryonic development. However, the regulation of ZGA remains elusive in mammals. Here we report that a maternal factor TDP-43, a nuclear transactive response DNA-binding protein, regulates ZGA through RNA Pol II and is essential for mouse early embryogenesis. Maternal TDP-43 translocates from the cytoplasm into the nucleus at the early two-cell stage when minor to major ZGA transition occurs. Genetic deletion of maternal TDP-43 results in mouse early embryos arrested at the two-cell stage. TDP-43 co-occupies with RNA Pol II as large foci in the nucleus and also at the promoters of ZGA genes at the late two-cell stage. Biochemical evidence indicates that TDP-43 binds Polr2a and Cyclin T1. Depletion of maternal TDP-43 caused the loss of Pol II foci and reduced Pol II binding on chromatin at major ZGA genes, accompanied by defective ZGA. Collectively, our results suggest that maternal TDP-43 is critical for mouse early embryonic development, in part through facilitating the correct RNA Pol II configuration and zygotic genome activation.
Collapse
Affiliation(s)
- Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qizhi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Gao
- Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xinai Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Kaye EG, Nelson GM, Zomer HD, Roy D, Joseph II, Adelman K, Reddi PP. RNA polymerase II pausing is essential during spermatogenesis for appropriate gene expression and completion of meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539879. [PMID: 37215034 PMCID: PMC10197597 DOI: 10.1101/2023.05.08.539879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to mature spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double strand break formation by SPO11, and disruption of SPO11 expression in germ cells lacking NELF.
Collapse
Affiliation(s)
- Emily G. Kaye
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey M. Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Helena D. Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Debarun Roy
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Irene Infancy Joseph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Prabhakara P. Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| |
Collapse
|
5
|
Zomer HD, Osuru HP, Chebolu A, Rayl JM, Timken M, Reddi PP. Sertoli cells require TDP-43 to support spermatogenesis†. Biol Reprod 2022; 107:1345-1359. [PMID: 35986894 PMCID: PMC9663940 DOI: 10.1093/biolre/ioac165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 08/23/2023] Open
Abstract
TAR DNA binding protein of 43 kD (TDP-43) is an evolutionarily conserved, ubiquitously expressed transcription factor and RNA-binding protein with major human health relevance. TDP-43 is present in Sertoli and germ cells of the testis and is aberrantly expressed in the sperm of infertile men. Sertoli cells play a key role in spermatogenesis by offering physical and nutritional support to male germ cells. The current study investigated the requirement of TDP-43 in Sertoli cells. Conditional knockout (cKO) of TDP-43 in mouse Sertoli cells caused failure of spermatogenesis and male subfertility. The cKO mice showed decreased testis weight, and low sperm count. Testis showed loss of germ cell layers, presence of vacuoles, and sloughing of round spermatids, suggesting loss of contact with Sertoli cells. Using a biotin tracer, we found that the blood-testis barrier (BTB) was disrupted as early as postnatal day 24 and worsened in adult cKO mice. We noted aberrant expression of the junction proteins connexin-43 (gap junction) and N-cadherin (ectoplasmic specialization). Oil Red O staining showed a decrease in lipid droplets (phagocytic function) in tubule cross-sections, Sertoli cells cytoplasm, and in the lumen of seminiferous tubules of cKO mice. Finally, qRT-PCR showed upregulation of genes involved in the formation and/or maintenance of Sertoli cell junctions as well as in the phagocytic pathway. Sertoli cells require TDP-43 for germ cell attachment, formation and maintenance of BTB, and phagocytic function, thus indicating an essential role for TDP-43 in the maintenance of spermatogenesis.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Apoorv Chebolu
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremy M Rayl
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Madeline Timken
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| |
Collapse
|
6
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|