1
|
Dwyer MB, Aumiller JL, Wedegaertner PB. Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G α in Human Cancer. Mol Pharmacol 2024; 106:198-215. [PMID: 39187387 PMCID: PMC11493338 DOI: 10.1124/molpharm.124.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
G protein-coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and βγ subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein βγ subunits (Gβγ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβγ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT: Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
3
|
Cummins MC, Tripathy A, Sondek J, Kuhlman B. De novo design of stable proteins that efficaciously inhibit oncogenic G proteins. Protein Sci 2023; 32:e4713. [PMID: 37368504 PMCID: PMC10360382 DOI: 10.1002/pro.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Many protein therapeutics are competitive inhibitors that function by binding to endogenous proteins and preventing them from interacting with native partners. One effective strategy for engineering competitive inhibitors is to graft structural motifs from a native partner into a host protein. Here, we develop and experimentally test a computational protocol for embedding binding motifs in de novo designed proteins. The protocol uses an "inside-out" approach: Starting with a structural model of the binding motif docked against the target protein, the de novo protein is built by growing new structural elements off the termini of the binding motif. During backbone assembly, a score function favors backbones that introduce new tertiary contacts within the designed protein and do not introduce clashes with the target binding partner. Final sequences are designed and optimized using the molecular modeling program Rosetta. To test our protocol, we designed small helical proteins to inhibit the interaction between Gαq and its effector PLC-β isozymes. Several of the designed proteins remain folded above 90°C and bind to Gαq with equilibrium dissociation constants tighter than 80 nM. In cellular assays with oncogenic variants of Gαq , the designed proteins inhibit activation of PLC-β isozymes and Dbl-family RhoGEFs. Our results demonstrate that computational protein design, in combination with motif grafting, can be used to directly generate potent inhibitors without further optimization via high throughput screening or selection.
Collapse
Affiliation(s)
- Matthew C. Cummins
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Ashutosh Tripathy
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - John Sondek
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Brian Kuhlman
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
4
|
Park R, Ongpipattanakul C, Nair SK, Bowers AA, Kuhlman B. Designer installation of a substrate recruitment domain to tailor enzyme specificity. Nat Chem Biol 2023; 19:460-467. [PMID: 36509904 PMCID: PMC10065947 DOI: 10.1038/s41589-022-01206-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Promiscuous enzymes that modify peptides and proteins are powerful tools for labeling biomolecules; however, directing these modifications to desired substrates can be challenging. Here, we use computational interface design to install a substrate recognition domain adjacent to the active site of a promiscuous enzyme, catechol O-methyltransferase. This design approach effectively decouples substrate recognition from the site of catalysis and promotes modification of peptides recognized by the recruitment domain. We determined the crystal structure of this novel multidomain enzyme, SH3-588, which shows that it closely matches our design. SH3-588 methylates directed peptides with catalytic efficiencies exceeding the wild-type enzyme by over 1,000-fold, whereas peptides lacking the directing recognition sequence do not display enhanced efficiencies. In competition experiments, the designer enzyme preferentially modifies directed substrates over undirected substrates, suggesting that we can use designed recruitment domains to direct post-translational modifications to specific sequence motifs on target proteins in complex multisubstrate environments.
Collapse
Affiliation(s)
- Rodney Park
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Cummins MC, Tripathy A, Sondek J, Kuhlman B. De novo design of stable proteins that efficaciously inhibit oncogenic G proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534629. [PMID: 37034763 PMCID: PMC10081213 DOI: 10.1101/2023.03.28.534629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Many protein therapeutics are competitive inhibitors that function by binding to endogenous proteins and preventing them from interacting with native partners. One effective strategy for engineering competitive inhibitors is to graft structural motifs from a native partner into a host protein. Here, we develop and experimentally test a computational protocol for embedding binding motifs in de novo designed proteins. The protocol uses an "inside-out" approach: Starting with a structural model of the binding motif docked against the target protein, the de novo protein is built by growing new structural elements off the termini of the binding motif. During backbone assembly, a score function favors backbones that introduce new tertiary contacts within the designed protein and do not introduce clashes with the target binding partner. Final sequences are designed and optimized using the molecular modeling program Rosetta. To test our protocol, we designed small helical proteins to inhibit the interaction between Gα q and its effector PLC-β isozymes. Several of the designed proteins remain folded above 90°C and bind to Gα q with equilibrium dissociation constants tighter than 80 nM. In cellular assays with oncogenic variants of Gα q , the designed proteins inhibit activation of PLC-β isozymes and Dbl-family RhoGEFs. Our results demonstrate that computational protein design, in combination with motif grafting, can be used to directly generate potent inhibitors without further optimization via high throughput screening or selection. statement for broader audience Engineered proteins that bind to specific target proteins are useful as research reagents, diagnostics, and therapeutics. We used computational protein design to engineer de novo proteins that bind and competitively inhibit the G protein, Gα q , which is an oncogene for uveal melanomas. This computational method is a general approach that should be useful for designing competitive inhibitors against other proteins of interest.
Collapse
Affiliation(s)
- Matthew C. Cummins
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John Sondek
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
A novel nucleic acid-binding protein, Gp49, from mycobacteriophage with mycobactericidal activity has the potential to be a therapeutic agent. Int J Biol Macromol 2023; 236:124025. [PMID: 36921817 DOI: 10.1016/j.ijbiomac.2023.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
The mycobacteriophages encode unique proteins that are potent to be therapeutic agents. We screened several clones with mycobactericidal properties from a genomic library of mycobacteriophages. Here we report the properties of one such clone coding the gene product, Gp49, of the phage Che12. Gp49 is a 16 kD dimeric protein having an HTH motif at its C-terminal and is highly conserved among mycobacteriophages and likely to be part of phage DNA replication machinery. Alphafold predicts it to be an α-helical protein. However, its CD spectrum showed it to be predominantly β-sheeted. It is a high-affinity heparin-binding protein having similarities with the macrophage protein Azurocidin. Its β-sheeted apo-structure gets transformed into α-helix upon binding to heparin. It binds to linear dsDNA as well as ssDNA and RNA cooperatively in a sequence non-specific manner. This DNA binding property enables it to inhibit both in vitro and in vivo transcription. The c-terminal HTH motif is responsible for binding to both heparin and nucleic acids. Its in vivo localization on DNA could cause displacements of many DNA-binding proteins from the bacterial chromosome. We surmised that the bactericidal activity of Gp49 arises from its non-specific DNA binding leading to the inhibition of many host-DNA-dependent processes. Its heparin-binding ability could have therapeutic/diagnostic usages in bacterial sepsis treatment.
Collapse
|
7
|
Cummins MC, Jacobs TM, Teets FD, DiMaio F, Tripathy A, Kuhlman B. AlphaFold accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein. Protein Sci 2022; 31:e4368. [PMID: 35762713 PMCID: PMC9207892 DOI: 10.1002/pro.4368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 11/12/2022]
Abstract
Using the molecular modeling program Rosetta, we designed a de novo protein, called SEWN0.1, which binds the heterotrimeric G protein Gαq. The design is helical, well-folded, and primarily monomeric in solution at a concentration of 10 μM. However, when we solved the crystal structure of SEWN0.1 at 1.9 Å, we observed a dimer in a conformation incompatible with binding Gαq . Unintentionally, we had designed a protein that adopts alternate conformations depending on its oligomeric state. Recently, there has been tremendous progress in the field of protein structure prediction as new methods in artificial intelligence have been used to predict structures with high accuracy. We were curious if the structure prediction method AlphaFold could predict the structure of SEWN0.1 and if the prediction depended on oligomeric state. When AlphaFold was used to predict the structure of monomeric SEWN0.1, it produced a model that resembles the Rosetta design model and is compatible with binding Gαq , but when used to predict the structure of a dimer, it predicted a conformation that closely resembles the SEWN0.1 crystal structure. AlphaFold's ability to predict multiple conformations for a single protein sequence should be useful for engineering protein switches.
Collapse
Affiliation(s)
- Matthew C. Cummins
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Tim M. Jacobs
- Department of Bioinformatics and Computational BiologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- AbCellera Biologics Inc.VancouverBritish ColumbiaCanada
| | - Frank D. Teets
- Department of Bioinformatics and Computational BiologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Department of Computational BiologyAndoverMassachusettsUSA
| | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Ashutosh Tripathy
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Brian Kuhlman
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineburger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|