1
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024:107907. [PMID: 39433125 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the post-translational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modifications (PTMs) govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including Heat Shock Protein 70 (HSP70), Heat Shock Protein 90 (HSP90), Carboxyl-terminus of HSC70 Interacting Protein (CHIP), and Heat Shock Protein Organizing Protein (HOP). This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from HOP to CHIP in association with HSP70 and HSP90-which could influence cellular growth and survival pathways. A comprehensive examination of PTM-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Javed A, Johnson OT, Balana AT, Volk RF, Langen A, Ahn BS, Zaro BW, Gestwicki JE, Pratt MR. O-GlcNAc modification of HSP27 alters its protein interactions and promotes refolding of proteins through the BAG3/HSP70 co-chaperone. Protein Sci 2024; 33:e5173. [PMID: 39291732 PMCID: PMC11409196 DOI: 10.1002/pro.5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Almost all types of cellular stress induce post-translational O-GlcNAc modifications of proteins, and this increase promotes cell survival. We previously demonstrated that O-GlcNAc on certain small heat shock proteins (sHSPs), including HSP27, directly increases their chaperone activity as one potential protective mechanism. Here, we furthered our use of synthetic proteins to prepare biotinylated sHSPs and show that O-GlcNAc modification of HSP27 also changes how it interacts within the sHSP system and the broader HSP network. Specifically, we show that O-GlcNAc modified HSP27 binds more strongly to the co-chaperone protein BAG3, which then promotes refolding of a model substrate by HSP70. We use proteomics to identify other potential HSP27 interactions that are changed by O-GlcNAc, including one that we confirm with another sHSP, αB-crystallin. These findings add additional evidence for O-GlcNAc as a switch for regulating protein-protein interactions and for modifications of chaperones as one mechanism by which O-GlcNAc protects against protein aggregation.
Collapse
Affiliation(s)
- Afraah Javed
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Oleta T. Johnson
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aaron T. Balana
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Regan F. Volk
- Department of Pharmaceutical Chemistry and Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Andreas Langen
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Benjamin S. Ahn
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Balyn W. Zaro
- Department of Pharmaceutical Chemistry and Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative DiseaseUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Matthew R. Pratt
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Devi S, Charvat A, Millbern Z, Vinueza N, Gestwicki JE. Exploration of the binding determinants of protein phosphatase 5 (PP5) reveals a chaperone-independent activation mechanism. J Biol Chem 2024; 300:107435. [PMID: 38830406 PMCID: PMC11259706 DOI: 10.1016/j.jbc.2024.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
The protein phosphatase 5 (PP5) is normally recruited to its substrates by the molecular chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90). This interaction requires the tetratricopeptide repeat (TPR) domain of PP5, which binds to an EEVD motif at the extreme C termini of cytosolic Hsp70 and Hsp90 isoforms. In addition to bringing PP5 into proximity with chaperone-bound substrates, this interaction also relieves autoinhibition in PP5's catalytic domain, promoting its phosphatase activity. To better understand the molecular determinants of this process, we screened a large, pentapeptide library for binding to PP5. This screen identified the amino acid preferences at each position, which we validated by showing that the optimal sequences bind 4- to 7-fold tighter than the natural EEVD motifs and stimulate PP5's enzymatic activity. The enhanced affinity for PP5's TPR domain was confirmed using a protein-adaptive differential scanning fluorimetry assay. Using this increased knowledge of structure-activity relationships, we re-examined affinity proteomics results to look for potential EEVD-like motifs in the C termini of known PP5-binding partners. This search identified elongator acetyltransferase complex subunit 1 (IKBKAP) as a putative partner, and indeed, we found that its C-terminal sequence, LSLLD, binds directly to PP5's TPR domain in vitro. Consistent with this idea, mutation of elongator acetyltransferase complex subunit 1's terminal aspartate was sufficient to interrupt the interaction with PP5 in vitro and in cells. Together, these findings reveal the sequence preferences of PP5's TPR domain and expand the scope of PP5's functions to include chaperone-independent complexes.
Collapse
Affiliation(s)
- Shweta Devi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, USA
| | - Annemarie Charvat
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, USA
| | - Zoe Millbern
- Department of Textile Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Nelson Vinueza
- Department of Textile Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
4
|
Wu X, Zhang Z, Cui W, Han L, Liu Z, Song X, Tan J. The analysis of inducible family members in the water flea Daphnia magna led to the identification of an uncharacterized lineage of heat shock protein 70. Heliyon 2024; 10:e30288. [PMID: 38765176 PMCID: PMC11098801 DOI: 10.1016/j.heliyon.2024.e30288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
To explore the function and evolutionary relationships of inducible heat shock protein 70 (Hsp70) in Daphnia magna, cDNAs of four Hsp70 family members (DmaHsp70, DmaHsp70-2, DmaHsp70-12, DmaHsp70-14) were cloned. While all DmaHsp70s possess three function domains, it is noteworthy that only DmaHsp70 ends with a "EEVD" motif. Phylogenetic analysis indicates that the Hsp70-12 lineage is distanced from the rest, and therefore it is an uncharacterized lineage of Hsp70. The differences in isoelectric point and 3-dimensional (3D) conformation of the N-terminal nucleotide binding domain (NBD) of DmaHsp70s further support the theory. DmaHsp70s exhibit varied motif distribution patterns and the logo sequences of motifs have diverse signature characteristics, indicating that different mechanisms are involved in the regulation of ATP binding and hydrolysis for the DmaHsp70s. Protein-protein network together with the predicted subcellular locations of DmaHsp70s suggest that they likely fulfill distinct roles in cells. The transcription of four DmaHsp70s were changed during the recovery stage after thermal stress or oxidative stress. But the expression pattern of them were dissimilar. Collectively, these results collectively elucidated the identification of a previously uncharacterizedHsp70 lineage in animal and extended our understanding of the Hsp70 family.
Collapse
Affiliation(s)
- Xiangyang Wu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhiwei Zhang
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenfeng Cui
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linfei Han
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zijie Liu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaojun Song
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiabo Tan
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
5
|
Adupa V, Ustyantseva E, Kampinga HH, Onck PR. Tertiary structure and conformational dynamics of the anti-amyloidogenic chaperone DNAJB6b at atomistic resolution. Nat Commun 2024; 15:3285. [PMID: 38627370 PMCID: PMC11021509 DOI: 10.1038/s41467-024-46587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
DNAJB6b is a molecular chaperone of the heat shock protein network, shown to play a crucial role in preventing aggregation of several disease-related intrinsically disordered proteins. Using homology modeling and microsecond-long all-atom molecular dynamics (MD) simulations, we show that monomeric DNAJB6b is a transiently interconverting protein cycling between three states: a closed state, an open state (both abundant), and a less abundant extended state. Interestingly, the reported regulatory autoinhibitory anchor between helix V in the G/F1 region and helices II/III of the J-domain, which obstructs the access of Hsp70 to the J-domain remains present in all three states. This possibly suggests a mechanistically intriguing regulation in which DNAJB6b only becomes exposed when loaded with substrates that require Hsp70 processing. Our MD results of DNAJB6b carrying mutations in the G/F1 region that are linked to limb-girdle muscular dystrophy type D1 (LGMDD1) show that this G/F1 region becomes highly dynamic, pointing towards a spontaneous release of the autoinhibitory helix V from helices II/III. This would increase the probability of non-functional Hsp70 interactions to DNAJB6b without substrates. Our cellular data indeed confirm that non-substrate loaded LGMDD1 mutants have aberrant interactions with Hsp70.
Collapse
Affiliation(s)
- Vasista Adupa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Elizaveta Ustyantseva
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Rebeaud ME, Tiwari S, Fauvet B, Mohr A, Goloubinoff P, De Los Rios P. Autorepression of yeast Hsp70 cochaperones by intramolecular interactions involving their J-domains. Cell Stress Chaperones 2024; 29:338-348. [PMID: 38521349 PMCID: PMC10999819 DOI: 10.1016/j.cstres.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1's ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1-4 chaperones that are the most abundant Hsp70s in the yeast cytosol.
Collapse
Affiliation(s)
- Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Vaud, Switzerland; Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Satyam Tiwari
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Bruno Fauvet
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Adelaïde Mohr
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Vaud, Switzerland.
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland.
| |
Collapse
|
7
|
Tanaka M, Fujikawa R, Sekiguchi T, Hernandez J, Johnson OT, Tanaka D, Kumafuji K, Serikawa T, Hoang Trung H, Hattori K, Mashimo T, Kuwamura M, Gestwicki JE, Kuramoto T. A missense mutation in the Hspa8 gene encoding heat shock cognate protein 70 causes neuroaxonal dystrophy in rats. Front Neurosci 2024; 18:1263724. [PMID: 38384479 PMCID: PMC10880117 DOI: 10.3389/fnins.2024.1263724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Neuroaxonal dystrophy (NAD) is a neurodegenerative disease characterized by spheroid (swollen axon) formation in the nervous system. In the present study, we focused on a newly established autosomal recessive mutant strain of F344-kk/kk rats with hind limb gait abnormalities and ataxia from a young age. Histopathologically, a number of axonal spheroids were observed throughout the central nervous system, including the spinal cord (mainly in the dorsal cord), brain stem, and cerebellum in F344-kk/kk rats. Transmission electron microscopic observation of the spinal cord revealed accumulation of electron-dense bodies, degenerated abnormal mitochondria, as well as membranous or tubular structures in the axonal spheroids. Based on these neuropathological findings, F344-kk/kk rats were diagnosed with NAD. By a positional cloning approach, we identified a missense mutation (V95E) in the Hspa8 (heat shock protein family A (Hsp70) member 8) gene located on chromosome 8 of the F344-kk/kk rat genome. Furthermore, we developed the Hspa8 knock-in (KI) rats with the V95E mutation using the CRISPR-Cas system. Homozygous Hspa8-KI rats exhibited ataxia and axonal spheroids similar to those of F344-kk/kk rats. The V95E mutant HSC70 protein exhibited the significant but modest decrease in the maximum hydrolysis rate of ATPase when stimulated by co-chaperons DnaJB4 and BAG1 in vitro, which suggests the functional deficit in the V95E HSC70. Together, our findings provide the first evidence that the genetic alteration of the Hspa8 gene caused NAD in mammals.
Collapse
Affiliation(s)
- Miyuu Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Ryoko Fujikawa
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Takahiro Sekiguchi
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Jason Hernandez
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Oleta T. Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Daisuke Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenta Kumafuji
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hieu Hoang Trung
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Kosuke Hattori
- Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
8
|
Kim J, Kim HJ, Choi E, Cho M, Choi S, Jeon MA, Lee JS, Park H. Expansion of the HSP70 gene family in Tegillarca granosa and expression profiles in response to zinc toxicity. Cell Stress Chaperones 2024; 29:97-112. [PMID: 38272254 PMCID: PMC10939072 DOI: 10.1016/j.cstres.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Zinc (Zn) is an essential micronutrient in organisms and an abundant element in the Earth's crust. Trace amounts of Zn released from natural sources can enter aquatic ecosystems through weathering and erosion. Zn accumulates in organisms, and when its intracellular concentration exceeds a certain level, it can induce oxidative stress and trigger oxidative stress-mediated heat shock protein (HSP) modulation. HSP70 is the most evolutionarily conserved among the HSP families. Despite extensive research on HSP70 genes in bivalves, the HSP70 gene family of Tegillarca granosa is still poorly characterized. We identified 65 HSP70 genes belonging to 6 families in the T. granosa genome, with 50 HSPa12 and 11 HSPa B2 genes highly expanded. On chromosome 11, 39 HSP70 (60%) genes were identified, and the HSPa12A genes were highly duplicated. A total of 527 and 538 differentially expressed genes were identified in the gills and mantle based on Zn exposure, respectively. The Gene Ontology of cellular anatomical entities was significantly enriched with upregulated differentially expressed genes in the gills and mantle. Eight of the 11 HSPa B2 genes were upregulated in both tissues. Most of the genes identified in both tissues were involved in "protein homeostasis" and "inhibition of apoptosis," which are associated with the HSP70 family's resistance to extrinsic and intrinsic stress. Hence, this study identified that the HSP70 gene family plays a vital role in the adaptation of aquatic organisms to heavy metal (e.g., Zn) stress in contaminated environments by compiling the different physiological responses to preserve homeostasis.
Collapse
Affiliation(s)
- Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyeon Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Mi Ae Jeon
- Aquaculture Management Division, South Sea Fisheries Research Institute, NIFS, Yeosu, Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea.
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
9
|
An Y, Wang X, Guan X, Yuan P, Liu Y, Wei L, Wang F, Qi X. Endoplasmic reticulum stress-mediated cell death in cardiovascular disease. Cell Stress Chaperones 2024; 29:158-174. [PMID: 38295944 PMCID: PMC10939083 DOI: 10.1016/j.cstres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a vital function in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) can trigger various modes of cell death by activating the unfolded protein response (UPR) signaling pathway. Cell death plays a crucial role in the occurrence and development of diseases such as cancer, liver diseases, neurological diseases, and cardiovascular diseases. Several cardiovascular diseases including hypertension, atherosclerosis, and heart failure are associated with ER stress. ER stress-mediated cell death is of interest in cardiovascular disease. Moreover, an increasing body of evidence supports the potential of modulating ERS for treating cardiovascular disease. This paper provides a comprehensive review of the UPR signaling pathway, the mechanisms that induce cell death, and the modes of cell death in cardiovascular diseases. Additionally, we discuss the mechanisms of ERS and UPR in common cardiovascular diseases, along with potential therapeutic strategies.
Collapse
Affiliation(s)
- Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Yuan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Wang
- Department of Vascular Surgery, Hebei General Hospital, Hebei, China
| | - Xin Qi
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
10
|
Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat Commun 2023; 14:7066. [PMID: 37923706 PMCID: PMC10624832 DOI: 10.1038/s41467-023-42735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.
Collapse
Affiliation(s)
- Meital Abayev-Avraham
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Dar Gliksberg
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel.
| |
Collapse
|
11
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
12
|
Guo H, Yi J, Wang F, Lei T, Du H. Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochem Int 2023; 162:105453. [PMID: 36402293 DOI: 10.1016/j.neuint.2022.105453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease, and the heat shock proteins (HSPs) are proved to be of great value for PD. In addition, HSPs can maintain protein homeostasis, degrade and inhibit protein aggregation by properly folding and activating intracellular proteins in PD. This study mainly summarizes the important roles of HSPs in PD and explores their feasibility as targets. We introduced the structural and functional characteristics of HSPs and the physiological functions of HSPs in PD. HSPs can protect neurons from damage by degrading aggregates with three mechanisms, including the aggregation and removing α-Synuclein (α-Syn) aggregates, promotion the autophagy of abnormal proteins, and inhibition the apoptosis of degenerated neurons. This study underscores the importance of HSPs as targets in PD and helps to expand new mechanisms in PD treatment strategies.
Collapse
Affiliation(s)
- Haodong Guo
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingsong Yi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
Zhang R, Malinverni D, Cyr DM, Rios PDL, Nillegoda NB. J-domain protein chaperone circuits in proteostasis and disease. Trends Cell Biol 2023; 33:30-47. [PMID: 35729039 PMCID: PMC9759622 DOI: 10.1016/j.tcb.2022.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022]
Abstract
The J-domain proteins (JDP) form the largest protein family among cellular chaperones. In cooperation with the Hsp70 chaperone system, these co-chaperones orchestrate a plethora of distinct functions, including those that help maintain cellular proteostasis and development. JDPs evolved largely through the fusion of a J-domain with other protein subdomains. The highly conserved J-domain facilitates the binding and activation of Hsp70s. How JDPs (re)wire Hsp70 chaperone circuits and promote functional diversity remains insufficiently explained. Here, we discuss recent advances in our understanding of the JDP family with a focus on the regulation built around J-domains to ensure correct pairing and assembly of JDP-Hsp70 machineries that operate on different clientele under various cellular growth conditions.
Collapse
Affiliation(s)
- Ruobing Zhang
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas M Cyr
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Johnson OT, Gestwicki JE. Multivalent protein-protein interactions are pivotal regulators of eukaryotic Hsp70 complexes. Cell Stress Chaperones 2022; 27:397-415. [PMID: 35670950 PMCID: PMC9346034 DOI: 10.1007/s12192-022-01281-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a molecular chaperone and central regulator of protein homeostasis (proteostasis). Paramount to this role is Hsp70's binding to client proteins and co-chaperones to produce distinct complexes, such that understanding the protein-protein interactions (PPIs) of Hsp70 is foundational to describing its function and dysfunction in disease. Mounting evidence suggests that these PPIs include both "canonical" interactions, which are universally conserved, and "non-canonical" (or "secondary") contacts that seem to have emerged in eukaryotes. These two categories of interactions involve discrete binding surfaces, such that some clients and co-chaperones engage Hsp70 with at least two points of contact. While the contributions of canonical interactions to chaperone function are becoming increasingly clear, it can be challenging to deconvolute the roles of secondary interactions. Here, we review what is known about non-canonical contacts and highlight examples where their contributions have been parsed, giving rise to a model in which Hsp70's secondary contacts are not simply sites of additional avidity but are necessary and sufficient to impart unique functions. From this perspective, we propose that further exploration of non-canonical contacts will generate important insights into the evolution of Hsp70 systems and inspire new approaches for developing small molecules that tune Hsp70-mediated proteostasis.
Collapse
Affiliation(s)
- Oleta T Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|