1
|
Fan G, Yu B, Tang L, Zhu R, Chen J, Zhu Y, Huang H, Zhou L, Liu J, Wang W, Tao Z, Zhang F, Yu S, Lu X, Cao Y, Du S, Li H, Li J, Zhang J, Ren H, Gires O, Liu H, Wang X, Qin J, Wang H. TSPAN8 + myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci Transl Med 2024; 16:eadj5705. [PMID: 38569015 DOI: 10.1126/scitranslmed.adj5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant stromal cells in the tumor microenvironment that promote cancer progression and relapse. However, the heterogeneity and regulatory roles of CAFs underlying chemoresistance remain largely unclear. Here, we performed a single-cell analysis using high-dimensional flow cytometry analysis and identified a distinct senescence-like tetraspanin-8 (TSPAN8)+ myofibroblastic CAF (myCAF) subset, which is correlated with therapeutic resistance and poor survival in multiple cohorts of patients with breast cancer (BC). TSPAN8+ myCAFs potentiate the stemness of the surrounding BC cells through secretion of senescence-associated secretory phenotype (SASP)-related factors IL-6 and IL-8 to counteract chemotherapy. NAD-dependent protein deacetylase sirtuin 6 (SIRT6) reduction was responsible for the senescence-like phenotype and tumor-promoting role of TSPAN8+ myCAFs. Mechanistically, TSPAN8 promoted the phosphorylation of ubiquitin E3 ligase retinoblastoma binding protein 6 (RBBP6) at Ser772 by recruiting MAPK11, thereby inducing SIRT6 protein destruction. In turn, SIRT6 down-regulation up-regulated GLS1 and PYCR1, which caused TSPAN8+ myCAFs to secrete aspartate and proline, and therefore proved a nutritional niche to support BC outgrowth. By demonstrating that TSPAN8+SIRT6low myCAFs were tightly associated with unfavorable disease outcomes, we proposed that the combined regimen of anti-TSPAN8 antibody and SIRT6 activator MDL-800 is a promising approach to overcome chemoresistance. These findings highlight that senescence contributes to CAF heterogeneity and chemoresistance and suggest that targeting TSPAN8+ myCAFs is a promising approach to circumvent chemoresistance.
Collapse
Affiliation(s)
- Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Bo Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Tang
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, China
| | - Rongxuan Zhu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianhua Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200243, China
| | - Liying Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200243, China
| | - Jun Liu
- Department of Breast-thyroid Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Wang
- Department of Breast-thyroid Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengchun Zhang
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, China
| | - Siwei Yu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Yuan Cao
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shaoqian Du
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huihui Li
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 271016, China
| | - Junjian Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 342500, China
| | - He Ren
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich 80336, Germany
| | - Haikun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Xin Wang
- Department of Surgery, Chinese University of Hong Kong Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongxia Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Samoilova EM, Romanov SE, Chudakova DA, Laktionov PP. Role of sirtuins in epigenetic regulation and aging control. Vavilovskii Zhurnal Genet Selektsii 2024; 28:215-227. [PMID: 38680178 PMCID: PMC11043508 DOI: 10.18699/vjgb-24-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 05/01/2024] Open
Abstract
Advances in modern healthcare in developed countries make it possible to extend the human lifespan, which is why maintaining active longevity is becoming increasingly important. After the sirtuin (SIRT) protein family was discovered, it started to be considered as a significant regulator of the physiological processes associated with aging. SIRT has deacetylase, deacylase, and ADP-ribosyltransferase activity and modifies a variety of protein substrates, including chromatin components and regulatory proteins. This multifactorial regulatory system affects many processes: cellular metabolism, mitochondrial functions, epigenetic regulation, DNA repair and more. As is expected, the activity of sirtuin proteins affects the manifestation of classic signs of aging in the body, such as cellular senescence, metabolic disorders, mitochondrial dysfunction, genomic instability, and the disruption of epigenetic regulation. Changes in the SIRT activity in human cells can also be considered a marker of aging and are involved in the genesis of various age-dependent disorders. Additionally, experimental data obtained in animal models, as well as data from population genomic studies, suggest a SIRT effect on life expectancy. At the same time, the diversity of sirtuin functions and biochemical substrates makes it extremely complicated to identify cause-and-effect relationships and the direct role of SIRT in controlling the functional state of the body. However, the SIRT influence on the epigenetic regulation of gene expression during the aging process and the development of disorders is one of the most important aspects of maintaining the homeostasis of organs and tissues. The presented review centers on the diversity of SIRT in humans and model animals. In addition to a brief description of the main SIRT enzymatic and biological activity, the review discusses its role in the epigenetic regulation of chromatin structure, including the context of the development of genome instability associated with aging. Studies on the functional connection between SIRT and longevity, as well as its effect on pathological processes associated with aging, such as chronic inflammation, fibrosis, and neuroinflammation, have been critically analyzed.
Collapse
Affiliation(s)
- E M Samoilova
- Novosibirsk State University, Novosibirsk, Russia Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - S E Romanov
- Novosibirsk State University, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Chudakova
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia, Moscow, Russia
| | - P P Laktionov
- Novosibirsk State University, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Kong W, Chen J, Ruan X, Xu X, Li X, Bao M, Shao Y, Bian X, Li R, Jiang Q, Zhang Y, Li Z, Yan F, Ye J. Cardiac injury activates STING signaling via upregulating SIRT6 in macrophages after myocardial infarction. Life Sci 2024; 341:122474. [PMID: 38296191 DOI: 10.1016/j.lfs.2024.122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
AIMS This work sought to investigate the mechanism underlying the STING signaling pathway during myocardial infarction (MI), and explore the involvement and the role of SIRT6 in the process. MAIN METHODS Mice underwent the surgery of permanent left anterior descending (LAD) artery constriction. Primary cardiomyocytes (CMs) and fibroblasts were subjected to hypoxia to mimic MI in vitro. STING expression was assessed in the infarct heart, and the effect of STING inhibition on cardiac fibrosis was explored. This study also evaluated the regulatory effect of STING by SIRT6 in macrophages. KEY FINDINGS STING protein was increased in the infarct heart tissue, highlighting its involvement in the post-MI inflammatory response. Hypoxia-induced death of CMs and fibroblasts contributed to the upregulation of STING in macrophages, establishing the involvement of STING in the intercellular signaling during MI. Inhibition of STING resulted in a significant reduction of cardiac fibrosis at day 14 after MI. Additionally, this study identified SIRT6 as a key regulator of STING via influencing its acetylation and ubiquitination in macrophages, providing novel insights into the posttranscriptional modification and expression of STING at the acute phase after myocardial infarction. SIGNIFICANCE This work shows the key role of SIRT6/STING signaling in the pathogenesis of cardiac injury after MI, suggesting that targeting this regulatory pathway could be a promising strategy to attenuate cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Weixian Kong
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Jiawen Chen
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xinjia Ruan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaozhi Xu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Xie Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Mengmeng Bao
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Yuru Shao
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Xiaohong Bian
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Ruiyan Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Qizhou Jiang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Yubin Zhang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China; Hubei key Laboratory of Cardiology, Wuhan 430060, China.
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Junmei Ye
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
4
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
5
|
Wu K, Wang Y, Liu R, Wang H, Rui T. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol 2023; 14:1207133. [PMID: 37497437 PMCID: PMC10366693 DOI: 10.3389/fphys.2023.1207133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Cardiovascular diseases are severe diseases posing threat to human health because of their high morbidity and mortality worldwide. The incidence of diabetes mellitus is also increasing rapidly. Various signaling molecules are involved in the pathogenesis of cardiovascular diseases and diabetes. Sirtuin 6 (Sirt6), which is a class III histone deacetylase, has attracted numerous attentions since its discovery. Sirt6 enjoys a unique structure, important biological functions, and is involved in multiple cellular processes such as stress response, mitochondrial biogenesis, transcription, insulin resistance, inflammatory response, chromatin silencing, and apoptosis. Sirt6 also plays significant roles in regulating several cardiovascular diseases including atherosclerosis, coronary heart disease, as well as cardiac remodeling, bringing Sirt6 into the focus of clinical interests. In this review, we examine the recent advances in understanding the mechanistic working through which Sirt6 alters the course of lethal cardiovascular diseases and diabetes mellitus.
Collapse
|
6
|
Hou Y, Shi J, Guo Y, Shi G. DNMT1 regulates polarization of macrophage-induced intervertebral disc degeneration by modulating SIRT6 expression and promoting pyroptosis in vivo. Aging (Albany NY) 2023; 15:204729. [PMID: 37199639 DOI: 10.18632/aging.204729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a complex phenomenon and a multifactorial degenerative disease that creates a heavy economic burden on health systems globally. Currently, there is no specific treatment proven to be effective in reversing and delaying the progression of IDD. METHOD This study consisted of animal and cell culture experiments. The role of DNA methyltransferase 1 (DNMT1) on regulating the M1/M2 macrophages polarization and pyroptosis, as well as its effect on Sirtuin 6 (SIRT6) expression in an IDD rat model and in tert-butyl hydroperoxide (TBHP)-treated nucleus pulposus cells (NPCs) were explored. Rat models were constructed, followed by transfection with lentiviral vector to inhibit DNMT1 or overexpress SIRT6. The NPCs were treated with THP-1-cells conditioned medium, and their pyroptosis, apoptosis, and viability were evaluated. Western blot, histological and immunohistochemistry staining, ELISA, PCR, and flow cytometry were all used to evaluate the role of DNMT1/ SIRT6 on macrophage polarization. RESULTS Silencing DNMT1 inhibited apoptosis, the expression of related inflammatory mediators (e.g., iNOS) and inflammatory cytokines (e.g., IL6 and TNF-α). Moreover, silencing DNMT1 significantly inhibited the expression of pyroptosis markers IL- 1β, IL-6, and IL-18 and decreased the NLRP3, ASC, and caspase-1 expression. On the other hand, M2 macrophage specific markers CD163, Arg-1, and MR were overexpressed upon silencing DNMT1 or SIRT6 overexpression. At the same time, silencing DNMT1 exerted a regulatory effect on increasing the SIRT6 expression. CONCLUSIONS DNMT1 may be a promising potential target for IDD treatment due to its ability to ameliorate the progression of the disease.
Collapse
Affiliation(s)
- Yang Hou
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiangang Shi
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yongfei Guo
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guodong Shi
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
7
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Guo Z, Li P, Ge J, Li H. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 2022; 13:1787-1822. [PMID: 36465178 PMCID: PMC9662279 DOI: 10.14336/ad.2022.0413] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 07/28/2023] Open
Abstract
As an important NAD+-dependent enzyme, SIRT6 has received significant attention since its discovery. In view of observations that SIRT6-deficient animals exhibit genomic instability and metabolic disorders and undergo early death, SIRT6 has long been considered a protein of longevity. Recently, growing evidence has demonstrated that SIRT6 functions as a deacetylase, mono-ADP-ribosyltransferase and long fatty deacylase and participates in a variety of cellular signaling pathways from DNA damage repair in the early stage to disease progression. In this review, we elaborate on the specific substrates and molecular mechanisms of SIRT6 in various physiological and pathological processes in detail, emphasizing its links to aging (genomic damage, telomere integrity, DNA repair), metabolism (glycolysis, gluconeogenesis, insulin secretion and lipid synthesis, lipolysis, thermogenesis), inflammation and cardiovascular diseases (atherosclerosis, cardiac hypertrophy, heart failure, ischemia-reperfusion injury). In addition, the most recent advances regarding SIRT6 modulators (agonists and inhibitors) as potential therapeutic agents for SIRT6-mediated diseases are reviewed.
Collapse
Affiliation(s)
- Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Pérez-Torrado V, Rodríguez-Duarte J, Escande C, Bresque M. Flow Cytometry Analysis of SIRT6 Expression in Peritoneal Macrophages. Bio Protoc 2022; 12:e4523. [PMID: 36313196 PMCID: PMC9548512 DOI: 10.21769/bioprotoc.4523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 12/29/2022] Open
Abstract
The sirtuin 6 has emerged as a regulator of acute and chronic immune responses. Recent findings show that SIRT6 is necessary for mounting an active inflammatory response in macrophages. In vitro studies revealed that SIRT6 is stabilized in the cytoplasm to promote tumor necrosis factor (TNFα) secretion. Notably, SIRT6 also promotes TNFα secretion by resident peritoneal macrophages upon lipopolysaccharide (LPS) stimulation in vivo. Although many studies have investigated SIRT6 function in the immune response through different genetic and pharmacological approaches, direct measurements of in vivo SIRT6 expression in immune cells by flow cytometry have not yet been performed. Here, we describe a step-by-step protocol for peritoneal fluid extraction, isolation, and preparation of peritoneal cavity cells, intracellular SIRT6 staining, and flow cytometry analysis to measure SIRT6 levels in mice peritoneal macrophages. By providing a robust method to quantify SIRT6 levels in different populations of macrophages, this method will contribute to deepening our understanding of the role of SIRT6 in immunity, as well as in other cellular processes regulated by SIRT6. Graphical abstract.
Collapse
Affiliation(s)
- Valentina Pérez-Torrado
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
,
Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
,
Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay
| | - Jorge Rodríguez-Duarte
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Carlos Escande
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
,
*For correspondence:
;
| | - Mariana Bresque
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
,
Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
,
*For correspondence:
;
| |
Collapse
|
10
|
Deng J, Wu Z, He Y, Lin L, Tan W, Yang J. Interaction Between Intrinsic Renal Cells and Immune Cells in the Progression of Acute Kidney Injury. Front Med (Lausanne) 2022; 9:954574. [PMID: 35872775 PMCID: PMC9300888 DOI: 10.3389/fmed.2022.954574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
A growing number of studies have confirmed that immune cells play various key roles in the pathophysiology of acute kidney injury (AKI) development. After the resident immune cells and intrinsic renal cells are damaged by ischemia and hypoxia, drugs and toxins, more immune cells will be recruited to infiltrate through the release of chemokines, while the intrinsic cells promote macrophage polarity conversion, and the immune cells will promote various programmed deaths, phenotypic conversion and cycle arrest of the intrinsic cells, ultimately leading to renal impairment and fibrosis. In the complex and dynamic immune microenvironment of AKI, the bidirectional interaction between immune cells and intrinsic renal cells affects the prognosis of the kidney and the progression of fibrosis, and determines the ultimate fate of the kidney.
Collapse
Affiliation(s)
- Junhui Deng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Lirong Lin
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang ;
| |
Collapse
|