1
|
Oliveira Souza RO, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. PLoS Pathog 2024; 20:e1012127. [PMID: 39374269 PMCID: PMC11486366 DOI: 10.1371/journal.ppat.1012127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
- Rodolpho Ornitz Oliveira Souza
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
2
|
Coscia SM, Moore AS, Wong YC, Holzbaur ELF. Mitochondrially-associated actin waves maintain organelle homeostasis and equitable inheritance. Curr Opin Cell Biol 2024; 88:102364. [PMID: 38692079 PMCID: PMC11179979 DOI: 10.1016/j.ceb.2024.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
First identified in dividing cells as revolving clusters of actin filaments, these are now understood as mitochondrially-associated actin waves that are active throughout the cell cycle. These waves are formed from the polymerization of actin onto a subset of mitochondria. Within minutes, this F-actin depolymerizes while newly formed actin filaments assemble onto neighboring mitochondria. In interphase, actin waves locally fragment the mitochondrial network, enhancing mitochondrial content mixing to maintain organelle homeostasis. In dividing cells actin waves spatially mix mitochondria in the mother cell to ensure equitable partitioning of these organelles between daughter cells. Progress has been made in understanding the consequences of actin cycling as well as the underlying molecular mechanisms, but many questions remain, and here we review these elements. Also, we draw parallels between mitochondrially-associated actin cycling and cortical actin waves. These dynamic systems highlight the remarkable plasticity of the actin cytoskeleton.
Collapse
Affiliation(s)
- Stephen M Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. https://twitter.com/StephenMCoscia
| | - Andrew S Moore
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Yvette C Wong
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Wu Y, Ren X, Shi P, Wu C. Regulation of mitochondrial structure by the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:206-214. [PMID: 37929797 DOI: 10.1002/cm.21804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Mitochondria are the powerhouse of the cell and play important roles in multiple cellular processes including cell metabolism, proliferation, and programmed cell death. Mitochondria are double-membrane organelles with the inner membrane folding inward to form cristae. Mitochondria networks undergo dynamic fission and fusion. Deregulation of mitochondrial structure has been linked to perturbed mitochondrial membrane potential and disrupted metabolism, as evidenced in tumorigenesis, neurodegenerative diseases, etc. Actin and its motors-myosins have long been known to generate mechanical forces and participate in short-distance cargo transport. Accumulating knowledge from biochemistry and live cell/electron microscope imaging has demonstrated the role of actin filaments in pre-constricting the mitochondria during fission. Recent studies have suggested the involvement of myosins in cristae maintenance and mitochondria quality control. Here, we review current findings and discuss future directions in the emerging fields of cytoskeletal regulation in cristae formation, mitochondrial dynamics, intracellular transport, and mitocytosis, with focus on the actin cytoskeleton and its motor proteins.
Collapse
Affiliation(s)
- Yihe Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyu Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Shi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
4
|
Ornitz Oliveira Souza R, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585462. [PMID: 38562694 PMCID: PMC10983951 DOI: 10.1101/2024.03.18.585462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| |
Collapse
|
5
|
Polanco CM, Cavieres VA, Galarza AJ, Jara C, Torres AK, Cancino J, Varas-Godoy M, Burgos PV, Tapia-Rojas C, Mardones GA. GOLPH3 Participates in Mitochondrial Fission and Is Necessary to Sustain Bioenergetic Function in MDA-MB-231 Breast Cancer Cells. Cells 2024; 13:316. [PMID: 38391929 PMCID: PMC10887169 DOI: 10.3390/cells13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we investigated the inter-organelle communication between the Golgi apparatus (GA) and mitochondria. Previous observations suggest that GA-derived vesicles containing phosphatidylinositol 4-phosphate (PI(4)P) play a role in mitochondrial fission, colocalizing with DRP1, a key protein in this process. However, the functions of these vesicles and potentially associated proteins remain unknown. GOLPH3, a PI(4)P-interacting GA protein, is elevated in various types of solid tumors, including breast cancer, yet its precise role is unclear. Interestingly, GOLPH3 levels influence mitochondrial mass by affecting cardiolipin synthesis, an exclusive mitochondrial lipid. However, the mechanism by which GOLPH3 influences mitochondria is not fully understood. Our live-cell imaging analysis showed GFP-GOLPH3 associating with PI(4)P vesicles colocalizing with YFP-DRP1 at mitochondrial fission sites. We tested the functional significance of these observations with GOLPH3 knockout in MDA-MB-231 cells of breast cancer, resulting in a fragmented mitochondrial network and reduced bioenergetic function, including decreased mitochondrial ATP production, mitochondrial membrane potential, and oxygen consumption. Our findings suggest a potential negative regulatory role for GOLPH3 in mitochondrial fission, impacting mitochondrial function and providing insights into GA-mitochondria communication.
Collapse
Affiliation(s)
- Catalina M. Polanco
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
| | - Viviana A. Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Providencia, Santiago 7510156, Chile
| | - Abigail J. Galarza
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| | - Claudia Jara
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Angie K. Torres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Patricia V. Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Gonzalo A. Mardones
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| |
Collapse
|
6
|
Mosier JA, Fabiano ED, Ludolph CM, White AE, Reinhart-King CA. Confinement primes cells for faster migration by polarizing active mitochondria. NANOSCALE ADVANCES 2023; 6:209-220. [PMID: 38125598 PMCID: PMC10729874 DOI: 10.1039/d3na00478c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Mechanical cues in the tumor microenvironment interplay with internal cellular processes to control cancer cell migration. Microscale pores present in tumor tissue confer varying degrees of confinement on migrating cells, increasing matrix contact and inducing cytoskeletal rearrangement. Previously, we observed that increased collagen matrix contact significantly increased cell migration speed and cell-induced strains within the matrix. However, the effects of this confinement on future cell migration are not fully understood. Here, we use a collagen microtrack platform to determine the effect of confinement on priming MDA-MB-231 cancer cells for fast migration. We show that migration through a confined track results in increased speed and accumulation of migratory machinery, including actin and active mitochondria, in the front of migrating breast cancer cells. By designing microtracks that allow cells to first navigate a region of high confinement, then a region of low confinement, we assessed whether migration in high confinement changes future migratory behavior. Indeed, cells maintain their speed attained in high confinement even after exiting to a region of low confinement, indicating that cells maintain memory of previous matrix cues to fuel fast migration. Active mitochondria maintain their location at the front of the cell even after cells leave high confinement. Furthermore, knocking out vinculin to disrupt focal adhesions disrupts active mitochondrial localization and disrupts the fast migration seen upon release from confinement. Together, these data suggest that active mitochondrial localization in confinement may facilitate fast migration post-confinement. By better understanding how confinement contributes to future cancer cell migration, we can identify potential therapeutic targets to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Catherine M Ludolph
- Department of Chemical Engineering, University of Texas at Austin Austin TX USA
| | - Addison E White
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | | |
Collapse
|
7
|
Venit T, Sapkota O, Abdrabou WS, Loganathan P, Pasricha R, Mahmood SR, El Said NH, Sherif S, Thomas S, Abdelrazig S, Amin S, Bedognetti D, Idaghdour Y, Magzoub M, Percipalle P. Positive regulation of oxidative phosphorylation by nuclear myosin 1 protects cells from metabolic reprogramming and tumorigenesis in mice. Nat Commun 2023; 14:6328. [PMID: 37816864 PMCID: PMC10564744 DOI: 10.1038/s41467-023-42093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.
Collapse
Affiliation(s)
- Tomas Venit
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Oscar Sapkota
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Wael Said Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Palanikumar Loganathan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Syed Raza Mahmood
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Nadine Hosny El Said
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Shimaa Sherif
- Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sneha Thomas
- Core Technology Platforms, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Salah Abdelrazig
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Shady Amin
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Davide Bedognetti
- Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
9
|
Mattedi F, Lloyd-Morris E, Hirth F, Vagnoni A. Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila. PLoS Biol 2023; 21:e3002273. [PMID: 37590319 PMCID: PMC10465005 DOI: 10.1371/journal.pbio.3002273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Miro GTPases control mitochondrial morphology, calcium homeostasis, and regulate mitochondrial distribution by mediating their attachment to the kinesin and dynein motor complex. It is not clear, however, how Miro proteins spatially and temporally integrate their function as acute disruption of protein function has not been performed. To address this issue, we have developed an optogenetic loss of function "Split-Miro" allele for precise control of Miro-dependent mitochondrial functions in Drosophila. Rapid optogenetic cleavage of Split-Miro leads to a striking rearrangement of the mitochondrial network, which is mediated by mitochondrial interaction with the microtubules. Unexpectedly, this treatment did not impact the ability of mitochondria to buffer calcium or their association with the endoplasmic reticulum. While Split-Miro overexpression is sufficient to augment mitochondrial motility, sustained photocleavage shows that Split-Miro is surprisingly dispensable to maintain elevated mitochondrial processivity. In adult fly neurons in vivo, Split-Miro photocleavage affects both mitochondrial trafficking and neuronal activity. Furthermore, functional replacement of endogenous Miro with Split-Miro identifies its essential role in the regulation of locomotor activity in adult flies, demonstrating the feasibility of tuning animal behaviour by real-time loss of protein function.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Coscia SM, Thompson CP, Tang Q, Baltrusaitis EE, Rhodenhiser JA, Quintero-Carmona OA, Ostap EM, Lakadamyali M, Holzbaur ELF. Myo19 tethers mitochondria to endoplasmic reticulum-associated actin to promote mitochondrial fission. J Cell Sci 2023; 136:jcs260612. [PMID: 36744380 PMCID: PMC10022680 DOI: 10.1242/jcs.260612] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial homeostasis requires a dynamic balance of fission and fusion. The actin cytoskeleton promotes fission, and we found that the mitochondrially localized myosin, myosin 19 (Myo19), is integral to this process. Myo19 knockdown induced mitochondrial elongation, whereas Myo19 overexpression induced fragmentation. This mitochondrial fragmentation was blocked by a Myo19 mutation predicted to inhibit ATPase activity and strong actin binding but not by mutations predicted to affect the working stroke of the motor that preserve ATPase activity. Super-resolution imaging indicated a dispersed localization of Myo19 on mitochondria, which we found to be dependent on metaxins. These observations suggest that Myo19 acts as a dynamic actin-binding tether that facilitates mitochondrial fragmentation. Myo19-driven fragmentation was blocked by depletion of either the CAAX splice variant of the endoplasmic reticulum (ER)-anchored formin INF2 or the mitochondrially localized F-actin nucleator Spire1C (a splice variant of Spire1), which together polymerize actin at sites of mitochondria-ER contact for fission. These observations imply that Myo19 promotes fission by stabilizing mitochondria-ER contacts; we used a split-luciferase system to demonstrate a reduction in these contacts following Myo19 depletion. Our data support a model in which Myo19 tethers mitochondria to ER-associated actin to promote mitochondrial fission.
Collapse
Affiliation(s)
- Stephen M. Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cameron P. Thompson
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qing Tang
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elana E. Baltrusaitis
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | - E. Michael Ostap
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Pollard LW, Coscia SM, Rebowski G, Palmer NJ, Holzbaur ELF, Dominguez R, Ostap EM. Ensembles of human myosin-19 bound to calmodulin and regulatory light chain RLC12B drive multimicron transport. J Biol Chem 2023; 299:102906. [PMID: 36642185 PMCID: PMC9929473 DOI: 10.1016/j.jbc.2023.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Myosin-19 (Myo19) controls the size, morphology, and distribution of mitochondria, but the underlying role of Myo19 motor activity is unknown. Complicating mechanistic in vitro studies, the identity of the light chains (LCs) of Myo19 remains unsettled. Here, we show by coimmunoprecipitation, reconstitution, and proteomics that the three IQ motifs of human Myo19 expressed in Expi293 human cells bind regulatory light chain (RLC12B) and calmodulin (CaM). We demonstrate that overexpression of Myo19 in HeLa cells enhances the recruitment of both Myo19 and RLC12B to mitochondria, suggesting cellular association of RLC12B with the motor. Further experiments revealed that RLC12B binds IQ2 and is flanked by two CaM molecules. In vitro, we observed that the maximal speed (∼350 nm/s) occurs when Myo19 is supplemented with CaM, but not RLC12B, suggesting maximal motility requires binding of CaM to IQ-1 and IQ-3. The addition of calcium slowed actin gliding (∼200 nm/s) without an apparent effect on CaM affinity. Furthermore, we show that small ensembles of Myo19 motors attached to quantum dots can undergo processive runs over several microns, and that calcium reduces the attachment frequency and run length of Myo19. Together, our data are consistent with a model where a few single-headed Myo19 molecules attached to a mitochondrion can sustain prolonged motile associations with actin in a CaM- and calcium-dependent manner. Based on these properties, we propose that Myo19 can function in mitochondria transport along actin filaments, tension generation on multiple randomly oriented filaments, and/or pushing against branched actin networks assembled near the membrane surface.
Collapse
Affiliation(s)
- Luther W Pollard
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen M Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grzegorz Rebowski
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas J Palmer
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - E Michael Ostap
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
13
|
Ul Fatima N, Ananthanarayanan V. Mitochondrial movers and shapers: Recent insights into regulators of fission, fusion and transport. Curr Opin Cell Biol 2023; 80:102150. [PMID: 36580830 DOI: 10.1016/j.ceb.2022.102150] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022]
Abstract
Mitochondria are highly dynamic organelles that undergo rapid morphological adaptations influencing their number, transport, cellular distribution, and function, which in turn facilitate the integration of mitochondrial function with physiological changes in the cell. These mitochondrial dynamics are dependent on tightly regulated processes such as fission, fusion, and attachment to the cytoskeleton, and their defects are observed in various pathophysiological conditions including cancer, cardiovascular disease, and neurodegeneration. Various studies over the years have identified key molecular players and uncovered the mechanisms that mediate and regulate these processes and have highlighted their complexity and context-specificity. This review focuses on the recent studies that have contributed to the understanding of processes that influence mitochondrial morphology including fission, fusion, and transport in the cell.
Collapse
Affiliation(s)
- Nida Ul Fatima
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Australia.
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Australia.
| |
Collapse
|
14
|
Kim YJ, Cho MJ, Yu WD, Kim MJ, Kim SY, Lee JH. Links of Cytoskeletal Integrity with Disease and Aging. Cells 2022; 11:cells11182896. [PMID: 36139471 DOI: 10.3390/cells11182896] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Min Jeong Cho
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Won Dong Yu
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| |
Collapse
|