1
|
Liu S, Xiong F, Dou Z, Chu L, Yao Y, Wang M, Yao X, Liu X, Wang Z. Phosphorylation of Lamin A/C regulates the structural integrity of the nuclear envelope. J Biol Chem 2024; 301:108033. [PMID: 39615679 PMCID: PMC11731451 DOI: 10.1016/j.jbc.2024.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
Dynamic disassembly and reconstruction of the nuclear lamina during entry and exit of mitosis, respectively, are pivotal steps in the proliferation of higher eukaryotic cells. Although numerous post-translational modifications of lamin proteins have been identified, key factors driving the nuclear lamina dynamics remain elusive. Here we identified CDK1-elicited phosphorylation sites on endogenous Lamin A/C and characterized their functions in regulation of the nuclear lamina. Specifically, mass spectrometry revealed CDK1-mediated phosphorylation of Lamin A/C at the N-terminal Thr19/Ser22 and the C-terminal Ser390/Ser392 during mitosis. Importantly, the phospho-mimicking 4D mutant T19D/S22D/S390D/S392D completely disrupted Lamin A filamentous structure in interphase cells. Conversely, the non-phosphorylatable mutant T19A/S22A and especially the 4A mutant T19A/S22A/S390A/S392A protected Lamin A from depolymerization during mitosis. These results suggest that phosphorylation and dephosphorylation of both N- and C-terminal sites regulate the nuclear lamina dynamics. Engineering the non-phosphorylatable mutant T19A/S22A into the endogenous LMNA gene resulted in nuclear abnormalities and micronucleus formation during telophase. Perturbation of the Lamin A phosphorylation is shown to prevent proper nuclear envelope dynamics and impair nuclear integrity. These findings reveal a previously undefined link between the CDK1-elicited Lamin A phosphorylation dynamics, nuclear envelope plasticity, and genomic stability during the cell cycle.
Collapse
Affiliation(s)
- Shuaiyu Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Lingluo Chu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Yihan Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Cambridge University Department of Chemistry, Cambridge, UK
| | - Ming Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China.
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China.
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Liu C, Dernburg AF. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science 2024; 386:eadm7969. [PMID: 39571011 DOI: 10.1126/science.adm7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/20/2024] [Indexed: 11/24/2024]
Abstract
Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis. We developed and deployed a chemically induced proximity system to identify key elements of this quality control pathway in Caenorhabditis elegans. Persistence of the polo-like kinase PLK-2 at pairing centers-specialized chromosome regions that interact with the nuclear envelope-induced apoptosis of oocytes in response to phosphorylation and destabilization of the nuclear lamina. Unexpectedly, the Piezo1/PEZO-1 channel localized to the nuclear envelope and was required to transduce this signal to promote apoptosis in maturing oocytes.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
3
|
Liu J, Li Q, Wang J, Qiu J, Zhou J, Peng Q. Genetically Encoded Fluorescence Resonance Energy Transfer Biosensor for Live-Cell Visualization of Lamin A Phosphorylation at Serine 22. Biomater Res 2024; 28:0091. [PMID: 39440272 PMCID: PMC11494032 DOI: 10.34133/bmr.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Extensive phosphorylation at serine 22 (pSer22) on lamin A is the hallmark of cell mitosis, which contributes to the breakdown of nuclear envelope. In the interphase, pSer22 lamin A exists in low abundance and is involved in mechanotransduction, virus infection, and gene expression. Numerous evidences emerge to support lamin A regulation on cell function and fate by phosphorylation. However, live-cell imaging tools for visualizing the dynamics of pSer22 lamin A are yet to be established. Herein, we developed a novel lamin A phosphorylation sensor (LAPS) based on fluorescence resonance energy transfer (FRET) with high sensitivity and specificity. We observed the dynamic lamin A phosphorylation during the cell cycle progression in single living cells: the increase of pSer22 modification when cells entered the mitosis and recovered upon the mitosis exit. Our biosensor also showed the gradual reduction of pSer22 modification during cell adhesion and in response to hypotonic environment. By applying LAPS, we captured the propagation of pSer22 modification from inside to outside of the inner nuclear membrane, which further led to the breakdown of nuclear envelope. Meanwhile, we found the synchronous phosphorylation of pSer22 lamin A and H3S10ph at mitosis entry. Inhibition of Aurora B, the responsible kinase for H3S10ph, could shorten the mitotic period without obvious effect on the pSer22 modification level of lamin A. Thus, LAPS allows the spatiotemporal visualization of the lamin A pSer22, which will be useful for elucidating the molecular mechanisms underlying cell mitosis and mechanoresponsive processes.
Collapse
Affiliation(s)
- Jian Liu
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qianqian Li
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | | | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering,
Chongqing University, Chongqing 400030, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology,
Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Qin Peng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
4
|
Jeong S, Ha NC. Deciphering vimentin assembly: Bridging theoretical models and experimental approaches. Mol Cells 2024; 47:100080. [PMID: 38871297 PMCID: PMC11267000 DOI: 10.1016/j.mocell.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate assembly process of vimentin intermediate filaments (IFs), key components of the eukaryotic cytoskeleton, has yet to be elucidated. In this work, we investigated the transition from soluble tetrameric vimentin units to mature 11-nm tubular filaments, addressing a significant gap in the understanding of IF assembly. Through a combination of theoretical modeling and analysis of experimental data, we propose a novel assembly sequence, emphasizing the role of helical turns and gap filling by soluble tetramers. Our findings shed light on the unique structural dynamics of vimentin and suggest broader implications for the general principles of IF formation.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconversions, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food and Bioconversions, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Tiwari V, Gupta P, Malladi N, Salgar S, Banerjee SK. Doxorubicin induces phosphorylation of lamin A/C and loss of nuclear membrane integrity: A novel mechanism of cardiotoxicity. Free Radic Biol Med 2024; 218:94-104. [PMID: 38582228 DOI: 10.1016/j.freeradbiomed.2024.04.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 μM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.
Collapse
Affiliation(s)
- Vikas Tiwari
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Paras Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Navya Malladi
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay Salgar
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay K Banerjee
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
6
|
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes (Basel) 2024; 15:633. [PMID: 38790262 PMCID: PMC11121635 DOI: 10.3390/genes15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.
Collapse
Affiliation(s)
- Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
7
|
Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol 2024; 86:102313. [PMID: 38262116 DOI: 10.1016/j.ceb.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.
Collapse
Affiliation(s)
- Joan M Sobo
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas S Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Buchwalter A. Intermediate, but not average: The unusual lives of the nuclear lamin proteins. Curr Opin Cell Biol 2023; 84:102220. [PMID: 37619289 DOI: 10.1016/j.ceb.2023.102220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The nuclear lamins are polymeric intermediate filament proteins that scaffold the nucleus and organize the genome in nearly all eukaryotic cells. This review focuses on the dynamic regulation of lamin filaments through their biogenesis, assembly, disassembly, and degradation. The lamins are unusually long-lived proteins under homeostatic conditions, but their turnover can be induced in select contexts that are highlighted in this review. Finally, we discuss recent investigations into the influence of laminopathy-linked mutations on the assembly, folding, and stability of the nuclear lamins.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Ahn J, Jo I, Jeong S, Lee J, Ha NC. Lamin Filament Assembly Derived from the Atomic Structure of the Antiparallel Four-Helix Bundle. Mol Cells 2023; 46:309-318. [PMID: 37170772 PMCID: PMC10183791 DOI: 10.14348/molcells.2023.2144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 05/13/2023] Open
Abstract
The nucleoskeletal protein lamin is primarily responsible for the mechanical stability of the nucleus. The lamin assembly process requires the A11, A22, and ACN binding modes of the coiled-coil dimers. Although X-ray crystallography and chemical cross-linking analysis of lamin A/C have provided snapshots of A11 and ACN binding modes, the assembly mechanism of the entire filament remains to be explained. Here, we report a crystal structure of a coil 2 fragment, revealing the A22 interaction at the atomic resolution. The structure showed detailed structural features, indicating that two coiled-coil dimers of the coil 2 subdomain are separated and then re-organized into the antiparallel-four-helix bundle. Furthermore, our findings suggest that the ACN binding mode between coil 1a and the C-terminal part of coil 2 when the A11 tetramers are arranged by the A22 interactions. We propose a full assembly model of lamin A/C with the curvature around the linkers, reconciling the discrepancy between the in situ and in vitro observations. Our model accounts for the balanced elasticity and stiffness of the nuclear envelopes, which is essential in protecting the cellular nucleus from external pressure.
Collapse
Affiliation(s)
- Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
- Present address: Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Inseong Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
- Present address: Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Jinwook Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| |
Collapse
|