1
|
Bock KW. Ah receptor, vitamin B12 and itaconate: how localized decrease of vitamin B12 prevents survival of macrophage-ingested bacteria. FRONTIERS IN TOXICOLOGY 2024; 6:1491184. [PMID: 39723336 PMCID: PMC11668795 DOI: 10.3389/ftox.2024.1491184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology, Tübingen, Germany
| |
Collapse
|
2
|
Sink WJ, Fling R, Yilmaz A, Nault R, Goniwiecha D, Harkema JR, Graham SF, Zacharewski T. 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) elicited dose-dependent shifts in the murine urinary metabolome associated with hepatic AHR-mediated differential gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619714. [PMID: 39484576 PMCID: PMC11526911 DOI: 10.1101/2024.10.22.619714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Epidemiological evidence suggests an association between dioxin and dioxin-like compound (DLC) exposure and human liver disease. The prototypical DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been shown to induce the progression of reversible hepatic steatosis to steatohepatitis with periportal fibrosis and biliary hyperplasia in mice. Although the effects of TCDD toxicity are mediated by aryl hydrocarbon receptor (AHR) activation, the underlying mechanisms of TCDD-induced hepatotoxicity are unresolved. In the present study, male C57BL/6NCrl mice were gavaged every 4 days for 28 days with 0.03 - 30 μg/kg TCDD and evaluated for liver histopathology and gene expression as well as complementary 1-dimensional proton magnetic resonance (1D- 1H NMR) urinary metabolic profiling. Urinary trimethylamine (TMA), trimethylamine N-oxide (TMAO), and 1-methylnicotinamide (1MN) levels were altered by TCDD at doses ≤ 3 μg/kg; other urinary metabolites, like glycolate, urocanate, and 3-hydroxyisovalerate, were only altered at doses that induced moderate to severe steatohepatitis. Bulk liver RNA-seq data suggested altered urinary metabolites correlated with hepatic differential gene expression corresponding to specific metabolic pathways. In addition to evaluating whether altered urinary metabolites were liver-dependent, published single-nuclear RNA-seq (snRNA-seq), AHR ChIP-seq, and AHR knockout gene expression datasets provide further support for hepatic cell-type and AHR-regulated dependency, respectively. Overall, TCDD-induced liver effects were preceded by and occurred with changes in urinary metabolite levels due to AHR-mediated changes in hepatic gene expression.
Collapse
Affiliation(s)
- Warren J Sink
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Russell Fling
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Ali Yilmaz
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
| | - Rance Nault
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824, USA
| | - Delanie Goniwiecha
- Middlebury College, Neuroscience Faculty, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - Jack R Harkema
- Michigan State University, Pathobiology & Diagnostic Investigation, East Lansing, MI, United States of America
| | - Stewart F Graham
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Timothy Zacharewski
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
He R, Zuo Y, Yi K, Liu B, Song C, Li N, Geng Q. The role and therapeutic potential of itaconate in lung disease. Cell Mol Biol Lett 2024; 29:129. [PMID: 39354366 PMCID: PMC11445945 DOI: 10.1186/s11658-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Lung diseases triggered by endogenous or exogenous factors have become a major concern, with high morbidity and mortality rates, especially after the coronavirus disease 2019 (COVID-19) pandemic. Inflammation and an over-activated immune system can lead to a cytokine cascade, resulting in lung dysfunction and injury. Itaconate, a metabolite produced by macrophages, has been reported as an effective anti-inflammatory and anti-oxidative stress agent with significant potential in regulating immunometabolism. As a naturally occurring metabolite in immune cells, itaconate has been identified as a potential therapeutic target in lung diseases through its role in regulating inflammation and immunometabolism. This review focuses on the origin, regulation, and function of itaconate in lung diseases, and briefly discusses its therapeutic potential.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Jilin University, Changchun, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| |
Collapse
|
4
|
Gouda H, Ji Y, Rath S, Watkins D, Rosenblatt D, Mootha V, Jones JW, Banerjee R. Differential utilization of vitamin B 12-dependent and independent pathways for propionate metabolism across human cells. J Biol Chem 2024; 300:107662. [PMID: 39128713 PMCID: PMC11408853 DOI: 10.1016/j.jbc.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Propionic acid links the oxidation of branched-chain amino acids and odd-chain fatty acids to the TCA cycle. Gut microbes ferment complex fiber remnants, generating high concentrations of short chain fatty acids, acetate, propionate and butyrate, which are shared with the host as fuel sources. Analysis of vitamin B12-dependent propionate utilization in skin biopsy samples has been used to characterize and diagnose underlying inborn errors of cobalamin (or B12) metabolism. In these cells, the B12-dependent enzyme, methylmalonyl-CoA mutase (MMUT), plays a central role in funneling propionate to the TCA cycle intermediate, succinate. Our understanding of the fate of propionate in other cell types, specifically, the involvement of the β-oxidation-like and methylcitrate pathways, is limited. In this study, we have used [14C]-propionate tracing in combination with genetic ablation or inhibition of MMUT, to reveal the differential utilization of the B12-dependent and independent pathways for propionate metabolism in fibroblast versus colon cell lines. We demonstrate that itaconate can be used as a tool to investigate MMUT-dependent propionate metabolism in cultured cell lines. While MMUT gates the entry of propionate carbons into the TCA cycle in fibroblasts, colon-derived cell lines exhibit a quantitatively significant or exclusive reliance on the β-oxidation-like pathway. Lipidomics and metabolomics analyses reveal that propionate elicits pleiotropic changes, including an increase in odd-chain glycerophospholipids, and perturbations in the purine nucleotide cycle and arginine/nitric oxide metabolism. The metabolic rationale and the regulatory mechanisms underlying the differential reliance on propionate utilization pathways at a cellular, and possibly tissue level, warrant further elucidation.
Collapse
Affiliation(s)
- Harsha Gouda
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Sneha Rath
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Broad Institute, Cambridge, Massachusetts, USA
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Vamsi Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Broad Institute, Cambridge, Massachusetts, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ruma Banerjee
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Samanta D, Rauniyar S, Saxena P, Sani RK. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis. mSystems 2024; 9:e0024824. [PMID: 38695578 PMCID: PMC11237726 DOI: 10.1128/msystems.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
6
|
Cholico GN, Fling RR, Sink WJ, Nault R, Zacharewski T. Inhibition of the urea cycle by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin increases serum ammonia levels in mice. J Biol Chem 2024; 300:105500. [PMID: 38013089 PMCID: PMC10731612 DOI: 10.1016/j.jbc.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA; Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
7
|
Gao J, Li Z, Zhu B, Wang L, Xu J, Wang B, Fu X, Han H, Zhang W, Deng Y, Wang Y, Zuo Z, Peng R, Tian Y, Yao Q. Creation of Environmentally Friendly Super "Dinitrotoluene Scavenger" Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303785. [PMID: 37715295 PMCID: PMC10602510 DOI: 10.1002/advs.202303785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants. Consequently, the modified rice plants acquire the ability to counteract the phytotoxicity of 2,4-DNT. The most significant finding of this study is that these modified rice plants can completely degrade 2,4-DNT into innocuous substances and subsequently introduce them into the tricarboxylic acid cycle. Further, research reveals that the modified rice plants enable the rapid phytoremediation of 2,4-DNT-contaminated soil. This innovative, eco-friendly phytoremediation approach for dinitrotoluene-contaminated soil and water demonstrates significant potential across diverse regions, substantially contributing to carbon neutrality and sustainable development objectives by repurposing carbon and energy from organic contaminants.
Collapse
|
8
|
Orlowska K, Fling RR, Nault R, Schilmiller AL, Zacharewski TR. Cystine/Glutamate Xc - Antiporter Induction Compensates for Transsulfuration Pathway Repression by 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) to Ensure Cysteine for Hepatic Glutathione Biosynthesis. Chem Res Toxicol 2023; 36:900-915. [PMID: 37184393 PMCID: PMC10284067 DOI: 10.1021/acs.chemrestox.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/16/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Russ R. Fling
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rance Nault
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L. Schilmiller
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy R. Zacharewski
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Walter Bock K. Aryl hydrocarbon receptor (AHR): towards understanding intestinal microbial ligands including vitamin B12 and folic acid as natural antagonists. Biochem Pharmacol 2023:115658. [PMID: 37336251 DOI: 10.1016/j.bcp.2023.115658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
AHR has been identified as ligand-modulated transcription factor and environmental sensor. However, explanation of its multiple agonistic and antagonistic ligands is far from complete. Studies of AHR's role in host-microbiome interaction are currently a fruitful area of research. Microbial products and virulence factors have been identified as AHR agonists. In steady state they are involved in safeguarding intestinal barrier integrity. When virulence factors from pathogenic bacteria are identified by AHR of intestinal immune cells, anti-microbial defense mechanisms are activated by generating reactive oxygen species (ROS) in intestinal epithelial cells and recruited immune cells. ROS production has to be strictly controlled, and anti-inflammatory responses have to be initiated timely in the resolution phase of inflammation to avoid tissue damage and chronic inflammatory responses. Surprisingly, bacteria-generated vitamin B12/cobalamin and vitamin B9/folic acid have been identified as natural AHR antagonists, stimulating the interest of biochemists. Hints for AHR-cobalamin antagonism are pointing to cobalamin-dependent enzymes leading to alterations of TCA cycle intermediates, and TCDD-mediated loss of serum cobalamin. Although we are still at the beginning to understand mechanisms, it is likely that scientific efforts are on a rewarding path to understand novel AHR functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
10
|
Nault R, Saha S, Bhattacharya S, Sinha S, Maiti T, Zacharewski T. Single-cell transcriptomics shows dose-dependent disruption of hepatic zonation by TCDD in mice. Toxicol Sci 2023; 191:135-148. [PMID: 36222588 PMCID: PMC9887712 DOI: 10.1093/toxsci/kfac109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dose-dependently induces the development of hepatic fat accumulation and inflammation with fibrosis in mice initially in the portal region. Conversely, differential gene and protein expression is first detected in the central region. To further investigate cell-specific and spatially resolved dose-dependent changes in gene expression elicited by TCDD, single-nuclei RNA sequencing and spatial transcriptomics were used for livers of male mice gavaged with TCDD every 4 days for 28 days. The proportion of 11 cell (sub)types across 131 613 nuclei dose-dependently changed with 68% of all portal and central hepatocyte nuclei in control mice being overtaken by macrophages following TCDD treatment. We identified 368 (portal fibroblasts) to 1339 (macrophages) differentially expressed genes. Spatial analyses revealed initial loss of portal identity that eventually spanned the entire liver lobule with increasing dose. Induction of R-spondin 3 (Rspo3) and pericentral Apc, suggested dysregulation of the Wnt/β-catenin signaling cascade in zonally resolved steatosis. Collectively, the integrated results suggest disruption of zonation contributes to the pattern of TCDD-elicited NAFLD pathologies.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Satabdi Saha
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Biomedical Engineering Department, Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, Texas 77840, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tim Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|