1
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Stefanski KM, Wilkinson MC, Sanders CR. Roles for PMP22 in Schwann cell cholesterol homeostasis in health and disease. Biochem Soc Trans 2024; 52:1747-1756. [PMID: 38979632 PMCID: PMC11574964 DOI: 10.1042/bst20231359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Underexpression, overexpression, and point mutations in peripheral myelin protein 22 (PMP22) cause most cases of Charcot-Marie-Tooth disease (CMTD). While its exact functions remain unclear, PMP22 is clearly essential for formation and maintenance of healthy myelin in the peripheral nervous system. This review explores emerging evidence for roles of PMP22 in cholesterol homeostasis. First, we highlight dysregulation of lipid metabolism in PMP22-based forms of CMTD and recently-discovered interactions between PMP22 and cholesterol biosynthesis machinery. We then examine data that demonstrates PMP22 and cholesterol co-traffic in cells and co-localize in lipid rafts, including how disease-causing PMP22 mutations result in aberrations in cholesterol localization. Finally, we examine roles for interactions between PMP22 and ABCA1 in cholesterol efflux. Together, this emerging body of evidence suggests that PMP22 plays a role in facilitating enhanced cholesterol synthesis and trafficking necessary for production and maintenance of healthy myelin.
Collapse
Affiliation(s)
- Katherine M Stefanski
- Department of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240-7917, U.S.A
| | - Mason C Wilkinson
- Department of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240-7917, U.S.A
| | - Charles R Sanders
- Department of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240-7917, U.S.A
| |
Collapse
|
3
|
Li GC, Castro MA, Ukwaththage T, Sanders CR. Optimizing NMR fragment-based drug screening for membrane protein targets. J Struct Biol X 2024; 9:100100. [PMID: 38883400 PMCID: PMC11176934 DOI: 10.1016/j.yjsbx.2024.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
NMR spectroscopy has played a pivotal role in fragment-based drug discovery by coupling detection of weak ligand-target binding with structural mapping of the binding site. Fragment-based screening by NMR has been successfully applied to many soluble protein targets, but only to a limited number of membrane proteins, despite the fact that many drug targets are membrane proteins. This is partly because of difficulties preparing membrane proteins for NMR-especially human membrane proteins-and because of the inherent complexity associated with solution NMR spectroscopy on membrane protein samples, which require the inclusion of membrane-mimetic agents such as micelles, nanodiscs, or bicelles. Here, we developed a generalizable protocol for fragment-based screening of membrane proteins using NMR. We employed two human membrane protein targets, both in fully protonated detergent micelles: the single-pass C-terminal domain of the amyloid precursor protein, C99, and the tetraspan peripheral myelin protein 22 (PMP22). For both we determined the optimal NMR acquisition parameters, protein concentration, protein-to-micelle ratio, and upper limit to the concentration of D6-DMSO in screening samples. Furthermore, we conducted preliminary screens of a plate-format molecular fragment mixture library using our optimized conditions and were able to identify hit compounds that selectively bound to the respective target proteins. It is hoped that the approaches presented here will be useful in complementing existing methods for discovering lead compounds that target membrane proteins.
Collapse
Affiliation(s)
| | | | - Thilini Ukwaththage
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine – Basic Sciences, Nashville, TN 37240, USA
| | - Charles R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine – Basic Sciences, Nashville, TN 37240, USA
| |
Collapse
|
4
|
Krauter D, Stausberg D, Hartmann TJ, Volkmann S, Kungl T, Rasche DA, Saher G, Fledrich R, Stassart RM, Nave KA, Goebbels S, Ewers D, Sereda MW. Targeting PI3K/Akt/mTOR signaling in rodent models of PMP22 gene-dosage diseases. EMBO Mol Med 2024; 16:616-640. [PMID: 38383802 PMCID: PMC10940316 DOI: 10.1038/s44321-023-00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.
Collapse
Affiliation(s)
- Doris Krauter
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Stausberg
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Timon J Hartmann
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Volkmann
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - David A Rasche
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ruth M Stassart
- Institute of Neuropathology, University of Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David Ewers
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael W Sereda
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Stefanski KM, Li GC, Marinko JT, Carter BD, Samuels DC, Sanders CR. Reply to Record et al. "The role of PMP22 T118M in Charcot-Marie-Tooth disease remains unsolved". J Biol Chem 2023; 299:105181. [PMID: 37716137 PMCID: PMC10509702 DOI: 10.1016/j.jbc.2023.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Affiliation(s)
- Katherine M Stefanski
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Geoffrey C Li
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Justin T Marinko
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
6
|
Record CJ, Laura M, Rossor AM, Reilly MM. The role of PMP22 T118M in Charcot-Marie-Tooth disease remains unsolved. J Biol Chem 2023; 299:105180. [PMID: 37703609 PMCID: PMC10502360 DOI: 10.1016/j.jbc.2023.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|