1
|
DiCiaccio B, Seehawer M, Li Z, Patmanidis A, Bui T, Foidart P, Nishida J, D'Santos CS, Papachristou EK, Papanastasiou M, Reiter AH, Qiu X, Li R, Jiang Y, Huang XY, Simeonov A, Kales SC, Rai G, Lal-Nag M, Jadhav A, Brown M, Carroll JS, Long HW, Polyak K. ZBTB7A is a modulator of KDM5-driven transcriptional networks in basal breast cancer. Cell Rep 2024; 43:114991. [PMID: 39570746 DOI: 10.1016/j.celrep.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024] Open
Abstract
We previously described that the KDM5B histone H3 lysine 4 demethylase is an oncogene in estrogen-receptor-positive breast cancer. Here, we report that KDM5A is amplified and overexpressed in basal breast tumors, and KDM5 inhibition (KDM5i) suppresses the growth of KDM5-amplified breast cancer cell lines. Using CRISPR knockout screens in a basal breast cancer cell line with or without KDM5i, we found that deletion of the ZBTB7A transcription factor and core SAGA complex sensitizes cells to KDM5i, whereas deletion of RHO-GTPases leads to resistance. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed co-localization of ZBTB7A and KDM5A/B at promoters with high histone H3K4me3 and dependence of KDM5A chromatin binding on ZBTB7A. ZBTB7A knockout altered the transcriptional response to KDM5i at NF-κB targets and mitochondrion-related pathways. High expression of ZBTB7A in triple-negative breast cancer is significantly associated with poor response to neoadjuvant chemotherapy. Our work furthers the understanding of KDM5-mediated gene regulation and identifies mediators of sensitivity to KDM5i.
Collapse
Affiliation(s)
- Benedetto DiCiaccio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Andriana Patmanidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Triet Bui
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Clive S D'Santos
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | | | | | - Andrew H Reiter
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiao-Yun Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason S Carroll
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Cervera-Juanes R, Zimmerman KD, Wilhelm L, Zhu D, Bodie J, Kohama SG, Urbanski HF. Modulation of neural gene networks by estradiol in old rhesus macaque females. GeroScience 2024; 46:5819-5841. [PMID: 38509416 PMCID: PMC11493911 DOI: 10.1007/s11357-024-01133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Kip D Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Larry Wilhelm
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Dongqin Zhu
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jessica Bodie
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
3
|
Tang J, Chen L, Chang Y, Hang D, Chen G, Wang Y, Feng L, Xu M. ZBTB7A interferes with the RPL5-P53 feedback loop and reduces endoplasmic reticulum stress-induced apoptosis of pancreatic cancer cells. Mol Carcinog 2024; 63:1783-1799. [PMID: 38896079 DOI: 10.1002/mc.23772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Endoplasmic reticulum (ER) stress is a primary mechanism leading to cell apoptosis, making it of great research interests in cancer management. This study delves into the function of ribosomal protein L5 (RPL5) in ER stress within pancreatic cancer (PCa) cells and investigates its regulatory mechanisms. Bioinformatics predictions pinpointed RPL5 as an ER stress-related gene exhibiting diminished expression in PCa. Indeed, RPL5 was found to be poorly expressed in PCa tissues and cells, with this reduced expression correlating with an unfavorable prognosis. Moreover, RPL5 overexpression led to heightened levels of p-PERK, p-eIF2α, and CHOP, bolstering the proapoptotic effect of Tunicamycin, an ER stress activator, on PCa cells. Additionally, the RPL5 overexpression curbed cell proliferation, migration, and invasion. Tunicamycin enhanced the binding between RPL5 and murine double minute 2 (MDM2), thus suppressing MDM2-mediated ubiquitination and degradation of P53. Consequently, P53 augmentation intensified ER stress, which further enhanced the binding between RPL5 and MDM2 through PERK-dependent eIF2α phosphorylation, thereby establishing a positive feedback loop. Zinc finger and BTB domain containing 7A (ZBTB7A), conspicuously overexpressed in PCa samples, repressed RPL5 transcription, thereby reducing P53 expression. Silencing of ZBTB7A heightened ER stress and subdued the malignant attributes of PCa cells, effects counteracted upon RPL5 silencing. Analogous outcomes were recapitulated in vivo employing a xenograft tumor mouse model, where ZBTB7A silencing dampened the tumorigenic potential of PCa cells, an effect reversed by additional RPL5 silencing. In conclusion, this study suggests that ZBTB7A represses RPL5 transcription, thus impeding the RPL5-P53 feedback loop and mitigating ER-induced apoptosis in PCa cells.
Collapse
Affiliation(s)
- Jie Tang
- Department of Gastroenterology, Shanghai Hongkou District Jiangwan Hospital, Shanghai, P.R. China
| | - Lingling Chen
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Yunli Chang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Dongyun Hang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Guoyu Chen
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Ying Wang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Lingmei Feng
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| |
Collapse
|
4
|
Zhang X, Blumenthal RM, Cheng X. Updated understanding of the protein-DNA recognition code used by C2H2 zinc finger proteins. Curr Opin Struct Biol 2024; 87:102836. [PMID: 38754172 DOI: 10.1016/j.sbi.2024.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
C2H2 zinc-finger (ZF) proteins form the largest family of DNA-binding transcription factors coded by mammalian genomes. In a typical DNA-binding ZF module, there are twelve residues (numbered from -1 to -12) between the last zinc-coordinating cysteine and the first zinc-coordinating histidine. The established C2H2-ZF "recognition code" suggests that residues at positions -1, -4, and -7 recognize the 5', central, and 3' bases of a DNA base-pair triplet, respectively. Structural studies have highlighted that additional residues at positions -5 and -8 also play roles in specific DNA recognition. The presence of bulky and either charged or polar residues at these five positions determines specificity for given DNA bases: guanine is recognized by arginine, lysine, or histidine; adenine by asparagine or glutamine; thymine or 5-methylcytosine by glutamate; and unmodified cytosine by aspartate. This review discusses recent structural characterizations of C2H2-ZFs that add to our understanding of the principles underlying the C2H2-ZF recognition code.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Liu BH, Liu M, Radhakrishnan S, Jaladanki CK, Gao C, Tang JP, Kumari K, Go ML, Vu KAL, Seo HS, Song K, Tian X, Feng L, Tan JL, Bassal MA, Arthanari H, Qi J, Dhe-Paganon S, Fan H, Tenen DG, Chai L. Targeting transcription factors through an IMiD independent zinc finger domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574032. [PMID: 38260640 PMCID: PMC10802279 DOI: 10.1101/2024.01.03.574032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Immunomodulatory imide drugs (IMiDs) degrade specific C2H2 zinc finger degrons in transcription factors, making them effective against certain cancers. SALL4, a cancer driver, contains seven C2H2 zinc fingers in four clusters, including an IMiD degron in zinc finger cluster two (ZFC2). Surprisingly, IMiDs do not inhibit growth of SALL4 expressing cancer cells. To overcome this limit, we focused on a non-IMiD degron, SALL4 zinc finger cluster four (ZFC4). By combining AlphaFold and the ZFC4-DNA crystal structure, we identified a potential ZFC4 drug pocket. Utilizing an in silico docking algorithm and cell viability assays, we screened chemical libraries and discovered SH6, which selectively targets SALL4-expressing cancer cells. Mechanistic studies revealed that SH6 degrades SALL4 protein through the CUL4A/CRBN pathway, while deletion of ZFC4 abolished this activity. Moreover, SH6 led to significant 62% tumor growth inhibition of SALL4+ xenografts in vivo and demonstrated good bioavailability in pharmacokinetic studies. In summary, these studies represent a new approach for IMiD independent drug discovery targeting C2H2 transcription factors in cancer.
Collapse
|
6
|
Cervera-Juanes R, Zimmerman KD, Wilhelm L, Zhu D, Bodie J, Kohama SG, Urbanski HF. Modulation of neural gene networks by estradiol in old rhesus macaque females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572105. [PMID: 38187564 PMCID: PMC10769303 DOI: 10.1101/2023.12.18.572105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p=1.6×10-51) and upregulation (p=3.8×10-3) of UBE2M across both brain regions, provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p=1.9×10-4; interaction p=3.5×10-2) of LTBR in the PFC, provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step towards understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
- Center for Precision Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Kip D. Zimmerman
- Center for Precision Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
- Department of Internal Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Larry Wilhelm
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Dongqin Zhu
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Jessica Bodie
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
da Silva Lima F, da Silva Gonçalves CE, Fock RA. A review of the role of zinc finger proteins on hematopoiesis. J Trace Elem Med Biol 2023; 80:127290. [PMID: 37659124 DOI: 10.1016/j.jtemb.2023.127290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
The bone marrow is responsible for producing an incredible number of cells daily in order to maintain blood homeostasis through a process called hematopoiesis. Hematopoiesis is a greatly demanding process and one entirely dependent on complex interactions between the hematopoietic stem cell (HSC) and its surrounding microenvironment. Zinc (Zn2+) is considered an important trace element, playing diverse roles in different tissues and cell types, and zinc finger proteins (ZNF) are proteins that use Zn2+ as a structural cofactor. In this way, the ZNF structure is supported by a Zn2+ that coordinates many possible combinations of cysteine and histidine, with the most common ZNF being of the Cys2His2 (C2H2) type, which forms a family of transcriptional activators that play an important role in different cellular processes such as development, differentiation, and suppression, all of these being essential processes for an adequate hematopoiesis. This review aims to shed light on the relationship between ZNF and the regulation of the hematopoietic tissue. We include works with different designs, including both in vitro and in vivo studies, detailing how ZNF might regulate hematopoiesis.
Collapse
Affiliation(s)
- Fabiana da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Basta J, Robbins L, Stout L, Brennan M, Shapiro J, Chen M, Denner D, Baldan A, Messias N, Madhavan S, Parikh SV, Rauchman M. Deletion of NuRD component Mta2 in nephron progenitor cells causes developmentally programmed FSGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562984. [PMID: 38948707 PMCID: PMC11213133 DOI: 10.1101/2023.10.18.562984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low nephron endowment at birth is a risk factor for chronic kidney disease. The prevalence of this condition is increasing due to higher survival rates of preterm infants and children with multi- organ birth defect syndromes that affect the kidney and urinary tract. We created a mouse model of congenital low nephron number due to deletion of Mta2 in nephron progenitor cells. Mta2 is a core component of the Nucleosome Remodeling and Deacetylase (NuRD) chromatin remodeling complex. These mice developed albuminuria at 4 weeks of age followed by focal segmental glomerulosclerosis (FSGS) at 8 weeks, with progressive kidney injury and fibrosis. Our studies reveal that altered mitochondrial metabolism in the post-natal period leads to accumulation of neutral lipids in glomeruli at 4 weeks of age followed by reduced mitochondrial oxygen consumption. We found that NuRD cooperated with Zbtb7a/7b to regulate a large number of metabolic genes required for fatty acid oxidation and oxidative phosphorylation. Analysis of human kidney tissue also supported a role for reduced mitochondrial lipid metabolism and ZBTB7A/7B in FSGS and CKD. We propose that an inability to meet the physiological and metabolic demands of post-natal somatic growth of the kidney promotes the transition to CKD in the setting of glomerular hypertrophy due to low nephron endowment.
Collapse
|