1
|
Lu J, Liu Y, Song M, Xi Y, Yang H, Liu W, Li X, Norvienyeku J, Zhang Y, Miao W, Lin C. The CsPbs2-interacting protein oxalate decarboxylase CsOxdC3 modulates morphosporogenesis, virulence, and fungicide resistance in Colletotrichum siamense. Microbiol Res 2024; 284:127732. [PMID: 38677265 DOI: 10.1016/j.micres.2024.127732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.
Collapse
Affiliation(s)
- Jingwen Lu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Miao Song
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yitao Xi
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hong Yang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Wenbo Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiao Li
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Justice Norvienyeku
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chunhua Lin
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P. The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:90-105. [PMID: 38495453 PMCID: PMC10941952 DOI: 10.15698/mic2024.03.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Collapse
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
3
|
Yang D, Zhang X, Cao M, Yin L, Gao A, An K, Gao S, Guo S, Yin H. Genome-Wide Identification, Expression and Interaction Analyses of PP2C Family Genes in Chenopodium quinoa. Genes (Basel) 2023; 15:41. [PMID: 38254931 PMCID: PMC10815568 DOI: 10.3390/genes15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Plant protein phosphatase 2Cs (PP2Cs) function as inhibitors in protein kinase cascades involved in various processes and are crucial participants in both plant development and signaling pathways activated by abiotic stress. In this study, a genome-wide study was conducted on the CqPP2C gene family. A total of putative 117 CqPP2C genes were identified. Comprehensive analyses of physicochemical properties, chromosome localization and subcellular localization were conducted. According to phylogenetic analysis, CqPP2Cs were divided into 13 subfamilies. CqPP2Cs in the same subfamily had similar gene structures, and conserved motifs and all the CqPP2C proteins had the type 2C phosphatase domains. The expansion of CqPP2Cs through gene duplication was primarily driven by segmental duplication, and all duplicated CqPP2Cs underwent evolutionary changes guided by purifying selection. The expression of CqPP2Cs in various tissues under different abiotic stresses was analyzed using RNA-seq data. The findings indicated that CqPP2C genes played a role in regulating both the developmental processes and stress responses of quinoa. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis of six CqPP2C genes in subfamily A revealed that they were up-regulated or down-regulated under salt and drought treatments. Furthermore, the results of yeast two-hybrid assays revealed that subfamily A CqPP2Cs interacted not only with subclass III CqSnRK2s but also with subclass II CqSnRK2s. Subfamily A CqPP2Cs could interact with CqSnRK2s in different combinations and intensities in a variety of biological processes and biological threats. Overall, our results will be useful for understanding the functions of CqPP2C in regulating ABA signals and responding to abiotic stress.
Collapse
Affiliation(s)
- Dongdong Yang
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Xia Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Meng Cao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Lu Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Aihong Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Kexin An
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Songmei Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Shanli Guo
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Haibo Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| |
Collapse
|
4
|
Sęk W, Kot AM, Rapoport A, Kieliszek M. Physiological and genetic regulation of anhydrobiosis in yeast cells. Arch Microbiol 2023; 205:348. [PMID: 37782422 PMCID: PMC10545650 DOI: 10.1007/s00203-023-03683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
Anhydrobiosis is a state of living organisms during which their metabolism is reversibly delayed or suspended due to a high degree of dehydration. Yeast cells, which are widely used in the food industry, may be induced into this state. The degree of viability of yeast cells undergoing the drying process also depends on rehydration. In an attempt to explain the essence of the state of anhydrobiosis and clarify the mechanisms responsible for its course, scientists have described various cellular compounds and structures that are responsible for it. The structures discussed in this work include the cell wall and plasma membrane, vacuoles, mitochondria, and lysosomes, among others, while the most important compounds include trehalose, glycogen, glutathione, and lipid droplets. Various proteins (Stf2p; Sip18p; Hsp12p and Hsp70p) and genes (STF2; Nsip18; TRX2; TPS1 and TPS2) are also responsible for the process of anhydrobiosis. Each factor has a specific function and is irreplaceable, detailed information is presented in this overview.
Collapse
Affiliation(s)
- Wioletta Sęk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1, Riga, 1004, Latvia
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| |
Collapse
|