1
|
Li YW, Wang DD, Chen HQ, Zeng Y, Wang N, Shi Y, Li JY, Zhou NY, Wang DP, Chen Q, Han X, Cao J, Liu WB. RNA reading protein YTHDF2 mediates Benzo(k)fluoranthene induced male reproductive injury by regulating the stability of BCL2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124889. [PMID: 39236842 DOI: 10.1016/j.envpol.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Benzo (k) fluoranthene (BkF) has adverse effects on male reproduction, but its specific mechanism of action is still unclear. This study focused on the role of RNA reading protein YTHDF2 and its mechanism in BkF induced male reproductive injury. Mouse GC-2 spermatocytes were exposed to 0, 40, 80, 160 μM BkF. It was found that BkF significantly increased the apoptosis of GC-2 cell and decreased its survival rate. BCL2 in spermatocytes decreased significantly, while the expression of P53 and BAX exhibited a notable increase. Interestingly, the expression of RNA reading protein YTHDF2 progressively rose in tandem with the escalating BkF exposure dosage. Overexpression of YTHDF2 significantly reduced the viability of cells and increased the apoptosis rate. Meanwhile, there was a substantial increase in the expression of P53 and BAX, BCL2 was significantly down-regulated. On the contrary, interfering with YTHDF2 increased cell proliferation and reduced cell apoptosis. Furthermore, YTHDF2 overexpression exacerbated the decrease in cell viability under BkF exposure, while YTHDF2 knockdown was the opposite. The results from the RIP assay demonstrated a significant enhancement in the interaction of YTHDF2 protein with BCL2 mRNA following the overexpression of YTHDF2. In addition, animal experiments showed that there was an increase in apoptosis and a decrease in proliferation of testicular cells in mice in the high-dose (30 mg/kg) BkF group by TUNEL staining and Ki67 staining. Immunohistochemical analysis showed that BCL2 levels were significantly lower in the high-dose group than in the control group, while YTHDF2, P53 and BAX were dramatically increased. In summary, our study suggests that YTHDF2 has been implicated in BkF-induced male reproductive injury by promoting the degradation of BCL2.
Collapse
Affiliation(s)
- Ya-Wen Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Shi
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; College of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiang-Ying Li
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; College of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ni-Ya Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Da-Peng Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xue Han
- Department of Traditional Chinese Medicine Health and Preventive Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Wells GR, Pillai RS. Roles of N 6-methyladenosine writers, readers and erasers in the mammalian germline. Curr Opin Genet Dev 2024; 87:102224. [PMID: 38981182 DOI: 10.1016/j.gde.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification of mRNAs in eukaryotes. Numerous studies have shown that m6A plays key roles in many biological and pathophysiological processes, including fertility. The factors involved in m6A-dependent mRNA regulation include writers, which deposit the m6A mark, erasers, which remove it, and readers, which bind to m6A-modified transcripts and mediate the regulation of mRNA fate. Many of these proteins are highly expressed in the germ cells of mammals, and some have been linked to fertility disorders in human patients. In this review, we summarise recent findings on the important roles played by proteins involved in m6A biology in mammalian gametogenesis and fertility. Continued study of the m6A pathway in the mammalian germline will shed further light on the importance of epitranscriptomics in reproduction and may lead to effective treatment of human fertility disorders.
Collapse
Affiliation(s)
- Graeme R Wells
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
3
|
蒋 婷, 张 学, 许 文. [The Roles of N 6-Methyladenosine Modification and Its Regulators in Male Reproduction]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:527-534. [PMID: 38948273 PMCID: PMC11211765 DOI: 10.12182/20240560103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 07/02/2024]
Abstract
Infertility affects an estimated 10 to 15 percent of couples worldwide, with approximately half of the cases attributed to male-related issues. Most men diagnosed with infertility exhibit symptoms such as oligospermia, asthenospermia, azoospermia, and compromised sperm quality. Spermatogenesis is a complex and tightly coordinated process of germ cell differentiation, precisely regulated at transcriptional, posttranscriptional, and translational levels to ensure stage-specific gene expression during the development of spermatogenic cells and normal spermiogenesis. N6-methyladenosine (m6A) stands out as the most prevalent modification on eukaryotic mRNA, playing pivotal roles in various biological processes, including mRNA splicing, transportation, and translation. RNA methylation modification is a dynamic and reversible process primarily mediated by "writers", removed by "erasers", and recognized by "readers". In mammals, the aberrant methylation modification of m6A on mRNA is associated with a variety of diseases, including male infertility. However, the precise involvement of disrupted m6A modification in the pathogenesis of human male infertility remains unresolved. Intriguingly, a significant correlation has been found between the expression levels of m6A regulators in the testis and the severity of sperm concentration, motility, and morphology. Aberrant expression patterns of m6A regulatory proteins have been detected in anomalous human semen samples, including those of oligospermia, asthenozoospermia, and azoospermia. Furthermore, the examination of both sperm samples and testicular tissues revealed abnormal mRNA m6A modification, leading to reduced sperm motility and concentration in infertile men. Consequently, it is hypothesized that dysregulation of m6A modification might serve as an integral link in the mechanism of male infertility. This paper presents a comprehensive review of the recent discoveries regarding the spatial and temporal expression dynamics of m6A regulators in testicular tissues and the correlation between deregulated m6A regulators and human male infertility. Previous studies predominantly utilized constitutive or conditional knockout animal models for testicular phenotypic investigations. However, gene suppression in additional tissues could potentially influence the testis in constitutive knockout models. Furthermore, considering the compromised spermatogenesis observed in constitutive animals, distinguishing between the indirect effects of gene depletion on testicular development and its direct impact on the spermatogenic process is challenging, due to their intricate relationship. Such confounding factors might compromise the validity of the findings. To address this challenge, an inducible and conditional gene knockout model may serve as a superior approach. To date, nearly all reported studies have concentrated solely on the level changes of m6A and its regulators in germs cells, while the understanding of the function of m6A modification in testicular somatic cells remains limited. Testicular somatic cells, including peritubular myoid cells, Sertoli cells, and Leydig cells, play indispensable roles during spermatogenesis. Hence, comprehensive exploration of m6A modification within these cells as an additional crucial regulatory mechanism is warranted. In addition, exploration into the presence of unique methylation mechanisms or m6A regulatory factors within the testes is warranted. To elucidate the role of m6A modification in germ cells and testicular somatic cells, detailed experimental strategies need to be implemented. Among them, manipulation of the levels of key enzymes involved in m6A methylation and demethylation might be the most effective approach. Moreover, comprehensive analysis of the gene expression profiles involved in various signaling pathways, such as Wnt/β-catenin, Ras/MAPK, and Hippo, in m6A-modified germ cells and testicular somatic cells can provide more insight into its regulatory role in the spermatogenesis process. Further research in this area could provide valuable insights for developing innovative strategies to treat male infertility. Finally, considering the mitigation impact of m6A imbalance regulation on disease, investigation concerning whether restoring the equilibrium of m6A modification regulation can restore normal spermatogenesis function is essential, potentially elucidating the pivotal clinical significance of m6A modulation in male infertility.
Collapse
Affiliation(s)
- 婷 蒋
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 学广 张
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 文明 许
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Leonetti AM, Galluzzo IR, McLean TAD, Stefanelli G, Ramnaraign F, Holm S, Winston SM, Reeves IL, Brimble MA, Walters BJ. The role of the m6A/m demethylase FTO in memory is both task and sex-dependent in mice. Neurobiol Learn Mem 2024; 210:107903. [PMID: 38403011 DOI: 10.1016/j.nlm.2024.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Formation of long-term memories requires learning-induced changes in both transcription and translation. Epitranscriptomic modifications of RNA recently emerged as critical regulators of RNA dynamics, whereby adenosine methylation (m6A) regulates translation, mRNA stability, mRNA localization, and memory formation. Prior work demonstrated a pro-memory phenotype of m6A, as loss of m6A impairs and loss of the m6A/m demethylase FTO improves memory formation. Critically, these experiments focused exclusively on aversive memory tasks and were only performed in male mice. Here we show that the task type and sex of the animal alter effects of m6A on memory, whereby FTO-depletion impaired object location memory in male mice, in contrast to the previously reported beneficial effects of FTO depletion on aversive memory. Additionally, we show that female mice have no change in performance after FTO depletion, demonstrating that sex of the mouse is a critical variable for understanding how m6A contributes to memory formation. Our study provides the first evidence for FTO regulation of non-aversive spatial memory and sexspecific effects of m6A, suggesting that identification of differentially methylated targets in each sex and task will be critical for understanding how epitranscriptomic modifications regulate memory.
Collapse
Affiliation(s)
- Amanda M Leonetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| | - Isabella R Galluzzo
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Timothy A D McLean
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Gilda Stefanelli
- Department of Biology, University of Ottawa, Ottawa, Marie-Curie Private, ON K1N 9A, Canada.
| | - Fiona Ramnaraign
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Samuel Holm
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Stephen M Winston
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Isaiah L Reeves
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Mark A Brimble
- Dept of Host-Microbe Interactions, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Brandon J Walters
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
5
|
Li D, Zhou L, Liu Z, Zhang Z, Mao W, Shi W, Zhu M, Wang F, Wan Y. FTO demethylates regulates cell-cycle progression by controlling CCND1 expression in luteinizing goat granulosa cells. Theriogenology 2024; 216:20-29. [PMID: 38154203 DOI: 10.1016/j.theriogenology.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
In mammals, N6-methyladenosine (m6A) stands out as one of the most abundant internal mRNA modifications and plays a crucial role in follicular development. Nonetheless, the precise mechanism by which the demethylase FTO regulates the progression of the goat luteinizing granulosa cells (LGCs) cycle remains to be elucidated. In our study, we primarily assessed the protein and mRNA expression levels of genes using Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), cell proliferation via EdU, cell viability with CCK-8, and apoptosis and cell cycle progression through flow cytometry. Here, the results demonstrated that knockdown of FTO significantly enhanced apoptosis, impeded cell proliferation, and increased autophagy levels in goat LGCs. Furthermore, the silencing of FTO substantially reduced cyclin D1 (CCND1) expression through the recognition and degradation of YTHDF2, consequently prolonging the cell cycle progression. This study sheds light on the mechanism by which FTO demethylation governs cell cycle progression by controlling the expression of CCND1 in goat LGCs, underscoring the dynamic role of m6A modification in the regulation of cell cycle progression.
Collapse
Affiliation(s)
- Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhou
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijia Mao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangwang Shi
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghui Zhu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|