1
|
Achatz S, Skerra A. Comparative genome analysis of three classical E. coli cloning strains designed for blue/white selection: JM83, JM109 and XL1-Blue. FEBS Open Bio 2024; 14:888-905. [PMID: 38726771 PMCID: PMC11148124 DOI: 10.1002/2211-5463.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
The development of the Escherichia coli K-12 laboratory strains JM83, JM109 and XL1-Blue was instrumental in early gene technology. We report the comprehensive genome sequence analysis of JM83 and XL1-Blue using Illumina and Oxford Nanopore technologies and a comparison with both the wild-type sequence (MG1655) and the genome of JM109 deposited at GenBank. Our investigation provides insight into the way how the genomic background that allows blue/white colony selection-by complementing a functionally inactive ω-fragment of β-galactosidase (LacZ) with its α-peptide encoded on the cloning vector-has been implemented independently in these three strains using classical bacterial genetics. In fact, their comparative analysis reveals recurrent motifs: (i) inactivation of the native enzyme via large deletions of chromosomal regions encompassing the lac locus, or a chemically induced frameshift deletion at the beginning of the lacZ cistron, and (ii) utilization of a defective prophage (ϕ80), or an F'-plasmid, to provide the lacZ∆M15 allele encoding its ω-fragment. While the genetic manipulations of the E. coli strains involved repeated use of mobile genetic elements as well as harsh chemical or physical mutagenesis, the individual modified traits appear remarkably stable as they can be found even in distantly related laboratory strains, beyond those investigated here. Our detailed characterization at the genome sequence level not only offers clues about the mechanisms of classical gene transduction and transposition but should also guide the future fine-tuning of E. coli strains for gene cloning and protein expression, including phage display techniques, utilizing advanced tools for site-specific genome engineering.
Collapse
Affiliation(s)
- Stefan Achatz
- Lehrstuhl für Biologische ChemieTechnische Universität MünchenFreisingGermany
| | - Arne Skerra
- Lehrstuhl für Biologische ChemieTechnische Universität MünchenFreisingGermany
| |
Collapse
|
2
|
Zhou X, Wang Y, Bao M, Chu Y, Liu R, Chen Q, Lin Y. Advanced detection of cervical cancer biomarkers using engineered filamentous phage nanofibers. Appl Microbiol Biotechnol 2024; 108:221. [PMID: 38372795 PMCID: PMC10876719 DOI: 10.1007/s00253-024-13058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Cervical cancer is a major global health concern, characterized by its high incidence and mortality rates. The detection of tumor markers is crucial for managing cancer, making treatment decisions, and monitoring disease progression. Vascular endothelial growth factor (VEGF) and programmed death-ligand 1 (PDL-1) are key targets in cervical cancer therapy and valuable biomarkers in predicting treatment response and prognosis. In this study, we found that combining the measurement of VEGF and soluble PDL-1 can be used for diagnosing and evaluating the progression of cervical cancer. To explore a more convenient approach for detecting and assessing cervical cancer, we designed and prepared an engineered fd bacteriophage, a human-safe viral nanofiber, equipped with two peptides targeting VEGF and PD-L1. The dual-display phage nanofiber specifically recognizes and binds to both proteins. Utilizing this nanofiber as a novel capture agent, we developed a new enzyme-linked immunosorbent assay (ELISA) method. This method shows significantly enhanced detection sensitivity compared to conventional ELISA methods, which use either anti-VEGF or anti-PD-L1 antibodies as capture agents. Therefore, the phage dual-display nanofiber presents significant potential in detecting cancer markers, evaluating medication efficacy, and advancing immunotherapy drug development. KEY POINTS: • The combined measurement of VEGF and soluble Programmed Death-Ligand 1(sPD-L1) demonstrates an additive effect in the diagnosis of cervical cancer. Fd phage nanofibers have been ingeniously engineered to display peptides that bind to VEGF and PD-L1, enabling the simultaneous detection of both proteins within a single assay • Genetically engineered phage nanofibers, adorned with two distinct peptides, can be utilized for the diagnosis and prognosis of cancer and can be mass-produced cost-effectively through bacterial infections • Employing dual-display fd phage nanofibers as capture probes, the phage ELISA method exhibited significantly enhanced detection sensitivity compared to traditional sandwich ELISA. Furthermore, phage ELISA facilitates the detection of a single protein or the simultaneous detection of multiple proteins, rendering them powerful tools for protein analysis and diagnosis across various fields, including cancer research.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| | - Meijing Bao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yuqing Chu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Ruixue Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yang Lin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| |
Collapse
|
3
|
Pellegri C, Bouveret E, Houot L. Protein-Protein Interactions: Oxidative Bacterial Two Hybrid. Methods Mol Biol 2024; 2715:225-233. [PMID: 37930531 DOI: 10.1007/978-1-0716-3445-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Protein-protein interaction studies are essential to understand how proteins organize themselves into interaction networks and thus influence cellular processes. Protein binding specificity depends on the correct three-dimensional folding of the polypeptide sequences. One of the forces involved in the structuring and stability of proteins is the formation of disulfide bonds. These covalent bonds are formed posttranscriptionally by the oxidation of a pair of cysteine residues and can serve structural, catalytic, or signaling roles. Here, we describe an engineered E. coli adenylate cyclase mutant strain with an oxidative cytoplasm that promotes correct folding of proteins with disulfide bonds. This genetic background expands the set of host strains suitable for studying protein-protein interactions in vivo by the adenylate cyclase two-hybrid approach.
Collapse
Affiliation(s)
- Callypso Pellegri
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille, France
| | - Emmanuelle Bouveret
- Institut Pasteur, Department of Microbiology, Unit Stress, Adaptation and Metabolism in enterobacteria, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille, France.
| |
Collapse
|