1
|
Shen Z, Li S, Liu Z, Qi Y, Yu W, Zhang X, Zhu M, Hu X, Gong C. GCRV-encoded circRNA circ_20 forms a ternary complex with BIP and PERK to delay virus replication by inhibiting the PERK-eIF2α pathway. Int J Biol Macromol 2024; 281:136314. [PMID: 39370064 DOI: 10.1016/j.ijbiomac.2024.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Viral circRNAs play important roles in host-virus interactions. Previous reports showed that grass carp reovirus (GCRV) encodes 32 circRNAs, and circ_20 from the negative strand of GCRV genome segment 7 has the potential to regulate GCRV replication. However, the regulatory mechanism of circ_20 on GCRV remains unknown. In this study, circ_20 was further validated, and circ_20 negatively regulated ERS, the PERK pathway, and ROS production in GCRV-infected cells. Furthermore, circ_20 inhibited the PERK pathway by forming a ternary complex with BIP and PERK, resulting in delaying GCRV replication. RNA pull-down results indicated that the 51-102 nt region of circ_20 interacts with BIP, while the 451-502 and 514-565 nt regions interact with PERK. After the deletion of these interaction regions, the ability of circ_20 to promote BIP-PERK interaction decreases, leading to a decrease in the ability to inhibit GCRV proliferation. These findings uncovered new insights into the complex interplay between viruses and host cells and provided a novel understanding of the significance of viral circRNAs in virus-host interactions.
Collapse
Affiliation(s)
- Zeen Shen
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Song Li
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Zhuo Liu
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Yanling Qi
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Wenbin Yu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Min Zhu
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Xiaolong Hu
- School of Life Sciences, Soochow University, Suzhou 21523, China.
| | - Chengliang Gong
- School of Life Sciences, Soochow University, Suzhou 21523, China.
| |
Collapse
|
2
|
Wang Y, Liu G, Qiu F, Li X, Diao Y, Yang M, Yang S, Li B, Han Q, Liu J. Corilagin alleviated intestinal ischemia-reperfusion injury by modulating endoplasmic reticulum stress via bonding with Bip. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156011. [PMID: 39265205 DOI: 10.1016/j.phymed.2024.156011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (II/R) injury is a common clinical emergency with high morbidity and mortality. Given the absence of efficacious prophylactic and therapeutic interventions and specific drugs, sustained efforts are essential to develop new targeted drugs. Corilagin, a naturally polyphenolic tannic acid widespread in longan, rambutan and many other edible economic crops with medicinal properties in China, is of interest due to its multiple bioactivities, including the potential to mitigate II/R injuries. Nevertheless, a clear understanding of its molecular targets and the intricate mechanisms against II/R injury remains obscure and requires further elucidation. OBJECTIVE This study aimed to investigate corilagin's pharmacological impact and molecular mechanism for II/R injury. METHODS An animal II/R model was established by clamping superior mesenteric artery (SMA), and the therapeutic efficacy of corilagin against II/R was evaluated by biochemical and pathological analysis. Next, integrated transcriptomic and proteomic analyses was performed to identify key targets. Moreover, endoplasmic reticulum stress (ERS) damage was respectively observed by transmission electron microscope (TEM), immunohistochemistry, TUNEL, flow cytometry and western blotting (WB). Finally, molecular docking, molecular dynamics (MD) simulation, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assays were utilized to assess the interaction between corilagin and binding immunoglobulin protein (Bip, Grp78 or Hspa5), and co-IP assay was conducted to investigate the interaction between Bip and its substrate proteins. RESULTS Corilagin exhibited robust protection against II/R injuries, effectively alleviating intestinal tissue damage and oxidative stress induced by II/R. The modulation of ERS as a potential regulatory mechanism was investigated through an integrated transcriptomic and proteomic analysis, identifying Bip as a key target contributing to corilagin's protective effects. Further experimental evidence using molecular docking, MD simulation, CETSA, and DARTS assays confirmed the potentially direct interaction of corilagin with Bip. This interaction promoted the ubiquitin-dependent degradation of the Bip-substrate complex, thereby suppressing ERS-related signalling pathways, including the IRE1 branch, PERK branch, and ATF6 branch, to alleviate tissue damage. CONCLUSION This study confirmed that corilagin could selectively bind to Bip, facilitating its ubiquitin-dependent recognition and degradation, thereby inhibiting severe endoplasmic reticulum stress signalling and alleviating II/R injury. A detailed mechanistic insight into the action mode of corilagin had been proposed, supporting its potential usage as an ERS inhibitor.
Collapse
Affiliation(s)
- Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Guanting Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Feng Qiu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Xinyi Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China; Technical Innovation Center of New Traditional Chinese Medicine Development and Transformation of Liaoning Province, Dalian 116044, PR China.
| | - Mengjing Yang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Shuhui Yang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China; Technical Innovation Center of New Traditional Chinese Medicine Development and Transformation of Liaoning Province, Dalian 116044, PR China.
| | - Qipeng Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China.
| |
Collapse
|
3
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|