1
|
Danilatou V, Dimopoulos D, Kostoulas T, Douketis J. Machine Learning-Based Predictive Models for Patients with Venous Thromboembolism: A Systematic Review. Thromb Haemost 2024; 124:1040-1052. [PMID: 38574756 DOI: 10.1055/a-2299-4758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND Venous thromboembolism (VTE) is a chronic disorder with a significant health and economic burden. Several VTE-specific clinical prediction models (CPMs) have been used to assist physicians in decision-making but have several limitations. This systematic review explores if machine learning (ML) can enhance CPMs by analyzing extensive patient data derived from electronic health records. We aimed to explore ML-CPMs' applications in VTE for risk stratification, outcome prediction, diagnosis, and treatment. METHODS Three databases were searched: PubMed, Google Scholar, and IEEE electronic library. Inclusion criteria focused on studies using structured data, excluding non-English publications, studies on non-humans, and certain data types such as natural language processing and image processing. Studies involving pregnant women, cancer patients, and children were also excluded. After excluding irrelevant studies, a total of 77 studies were included. RESULTS Most studies report that ML-CPMs outperformed traditional CPMs in terms of receiver operating area under the curve in the four clinical domains that were explored. However, the majority of the studies were retrospective, monocentric, and lacked detailed model architecture description and external validation, which are essential for quality audit. This review identified research gaps and highlighted challenges related to standardized reporting, reproducibility, and model comparison. CONCLUSION ML-CPMs show promise in improving risk assessment and individualized treatment recommendations in VTE. Apparently, there is an urgent need for standardized reporting and methodology for ML models, external validation, prospective and real-world data studies, as well as interventional studies to evaluate the impact of artificial intelligence in VTE.
Collapse
Affiliation(s)
- Vasiliki Danilatou
- School of Medicine, European University of Cyprus, Nicosia, Cyprus
- Healthcare Division, Sphynx Technology Solutions, Nicosia, Cyprus
| | - Dimitrios Dimopoulos
- School of Engineering, Department of Information and Communication Systems Engineering, University of the Aegean, North Aegean, Greece
| | - Theodoros Kostoulas
- School of Engineering, Department of Information and Communication Systems Engineering, University of the Aegean, North Aegean, Greece
| | - James Douketis
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Medicine, St. Joseph's Healthcare Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Xue L, He S, Singla RK, Qin Q, Ding Y, Liu L, Ding X, Bediaga-Bañeres H, Arrasate S, Durado-Sanchez A, Zhang Y, Shen Z, Shen B, Miao L, González-Díaz H. Machine learning guided prediction of warfarin blood levels for personalized medicine based on clinical longitudinal data from cardiac surgery patients: a prospective observational study. Int J Surg 2024; 110:01279778-990000000-01621. [PMID: 38833337 PMCID: PMC11487003 DOI: 10.1097/js9.0000000000001734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Warfarin is a common oral anticoagulant, and its effects vary widely among individuals. Numerous dose-prediction algorithms have been reported based on cross-sectional data generated via multiple linear regression or machine learning. This study aimed to construct an information fusion perturbation theory and machine learning prediction model of warfarin blood levels based on clinical longitudinal data from cardiac surgery patients. METHODS AND MATERIAL The data of 246 patients were obtained from electronic medical records. Continuous variables were processed by calculating the distance of the raw data with the moving average (MA ∆vki(sj)), and categorical variables in different attribute groups were processed using Euclidean distance (ED ǁ∆vk(sj)ǁ). Regression and classification analyses were performed on the raw data, MA ∆vki(sj), and ED ǁ∆vk(sj)ǁ. Different machine-learning algorithms were chosen for the STATISTICA and WEKA software. RESULTS The random forest (RF) algorithm was the best for predicting continuous outputs using the raw data. The correlation coefficients of the RF algorithm were 0.978 and 0.595 for the training and validation sets, respectively, and the mean absolute errors were 0.135 and 0.362 for the training and validation sets, respectively. The proportion of ideal predictions of the RF algorithm was 59.0%. General discriminant analysis (GDA) was the best algorithm for predicting the categorical outputs using the MA ∆vki(sj) data. The GDA algorithm's total true positive rate (TPR) was 95.4% and 95.6% for the training and validation sets, respectively, with MA ∆vki(sj) data. CONCLUSIONS An information fusion perturbation theory and machine learning model for predicting warfarin blood levels was established. A model based on the RF algorithm could be used to predict the target international normalized ratio (INR), and a model based on the GDA algorithm could be used to predict the probability of being within the target INR range under different clinical scenarios.
Collapse
Affiliation(s)
- Ling Xue
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
- Department of Pharmacology, Faculty of Medicine, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
| | - Shan He
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
- IKERDATA S.L., ZITEK, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Qiong Qin
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
| | - Yinglong Ding
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University
- Institute for Cardiovascular Science, Soochow University
| | - Linsheng Liu
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
| | - Xiaoliang Ding
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
| | - Harbil Bediaga-Bañeres
- IKERDATA S.L., ZITEK, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
- Department of Painting, Faculty of Fine Arts, University of the Basque Country UPV/EHU, 48940, Leioa, Biscay
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Aliuska Durado-Sanchez
- IKERDATA S.L., ZITEK, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
- Department of Public Law, Faculty of Law, University of The Basque Country (UPV/EHU), Leioa, Biscay, Basque, Country
| | - Yuzhen Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University
| | - Zhenya Shen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University
- Institute for Cardiovascular Science, Soochow University
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Liyan Miao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
- BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
- IKERBASQUE, Basque Foundation for Science, Bilbao, Basque Country, Spain
| |
Collapse
|
3
|
Xue L, Singla RK, He S, Arrasate S, González-Díaz H, Miao L, Shen B. Warfarin-A natural anticoagulant: A review of research trends for precision medication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155479. [PMID: 38493714 DOI: 10.1016/j.phymed.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability. PURPOSE The aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage. METHODS A bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature. RESULTS Bibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database. CONCLUSION Future research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.
Collapse
Affiliation(s)
- Ling Xue
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Faculty of Medicine, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Shan He
- IKERDATA S.l., ZITEK, University of The Basque Country (UPVEHU), Rectorate Building, 48940, Bilbao, Basque Country, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Basque Country, Spain
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Iancu A, Leb I, Prokosch HU, Rödle W. Machine learning in medication prescription: A systematic review. Int J Med Inform 2023; 180:105241. [PMID: 37939541 DOI: 10.1016/j.ijmedinf.2023.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Medication prescription is a complex process that could benefit from current research and development in machine learning through decision support systems. Particularly pediatricians are forced to prescribe medications "off-label" as children are still underrepresented in clinical studies, which leads to a high risk of an incorrect dose and adverse drug effects. METHODS PubMed, IEEE Xplore and PROSPERO were searched for relevant studies that developed and evaluated well-performing machine learning algorithms following the PRISMA statement. Quality assessment was conducted in accordance with the IJMEDI checklist. Identified studies were reviewed in detail, including the required variables for predicting the correct dose, especially of pediatric medication prescription. RESULTS The search identified 656 studies, of which 64 were reviewed in detail and 36 met the inclusion criteria. According to the IJMEDI checklist, five studies were considered to be of high quality. 19 of the 36 studies dealt with the active substance warfarin. Overall, machine learning algorithms based on decision trees or regression methods performed superior regarding their predictive power than algorithms based on neural networks, support vector machines or other methods. The use of ensemble methods like bagging or boosting generally enhanced the accuracy of the dose predictions. The required input and output variables of the algorithms were considerably heterogeneous and differ strongly among the respective substance. CONCLUSIONS By using machine learning algorithms, the prescription process could be simplified and dosing correctness could be enhanced. Despite the heterogenous results among the different substances and cases and the lack of pediatric use cases, the identified approaches and required variables can serve as an excellent starting point for further development of algorithms predicting drug doses, particularly for children. Especially the combination of physiologically-based pharmacokinetic models with machine learning algorithms represents a great opportunity to enhance the predictive power and accuracy of the developed algorithms.
Collapse
Affiliation(s)
- Alexa Iancu
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Wetterkreuz 15, 91058 Erlangen, Germany
| | - Ines Leb
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Wetterkreuz 15, 91058 Erlangen, Germany
| | - Hans-Ulrich Prokosch
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Wetterkreuz 15, 91058 Erlangen, Germany
| | - Wolfgang Rödle
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Wetterkreuz 15, 91058 Erlangen, Germany.
| |
Collapse
|
5
|
Zeng J, Shao J, Lin S, Zhang H, Su X, Lian X, Zhao Y, Ji X, Zheng Z. Optimizing the dynamic treatment regime of in-hospital warfarin anticoagulation in patients after surgical valve replacement using reinforcement learning. J Am Med Inform Assoc 2022; 29:1722-1732. [PMID: 35864720 DOI: 10.1093/jamia/ocac088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Warfarin anticoagulation management requires sequential decision-making to adjust dosages based on patients' evolving states continuously. We aimed to leverage reinforcement learning (RL) to optimize the dynamic in-hospital warfarin dosing in patients after surgical valve replacement (SVR). MATERIALS AND METHODS 10 408 SVR cases with warfarin dosage-response data were retrospectively collected to develop and test an RL algorithm that can continuously recommend daily warfarin doses based on patients' evolving multidimensional states. The RL algorithm was compared with clinicians' actual practice and other machine learning and clinical decision rule-based algorithms. The primary outcome was the ratio of patients without in-hospital INRs >3.0 and the INR at discharge within the target range (1.8-2.5) (excellent responders). The secondary outcomes were the safety responder ratio (no INRs >3.0) and the target responder ratio (the discharge INR within 1.8-2.5). RESULTS In the test set (n = 1260), the excellent responder ratio under clinicians' guidance was significantly lower than the RL algorithm: 41.6% versus 80.8% (relative risk [RR], 0.51; 95% confidence interval [CI], 0.48-0.55), also the safety responder ratio: 83.1% versus 99.5% (RR, 0.83; 95% CI, 0.81-0.86), and the target responder ratio: 49.7% versus 81.1% (RR, 0.61; 95% CI, 0.58-0.65). The RL algorithms performed significantly better than all the other algorithms. Compared with clinicians' actual practice, the RL-optimized INR trajectory reached and maintained within the target range significantly faster and longer. DISCUSSION RL could offer interactive, practical clinical decision support for sequential decision-making tasks and is potentially adaptable for varied clinical scenarios. Prospective validation is needed. CONCLUSION An RL algorithm significantly optimized the post-operation warfarin anticoagulation quality compared with clinicians' actual practice, suggesting its potential for challenging sequential decision-making tasks.
Collapse
Affiliation(s)
- Juntong Zeng
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianzhun Shao
- Department of Automation, Tsinghua University, Beijing, People's Republic of China
| | - Shen Lin
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
| | - Hongchang Zhang
- Department of Automation, Tsinghua University, Beijing, People's Republic of China
| | - Xiaoting Su
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaocong Lian
- Department of Automation, Tsinghua University, Beijing, People's Republic of China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, People's Republic of China
| | - Yan Zhao
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
| | - Xiangyang Ji
- Department of Automation, Tsinghua University, Beijing, People's Republic of China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, People's Republic of China
| | - Zhe Zheng
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, People's Republic of China
| |
Collapse
|
6
|
Riaño D, Pečnik Š, Alonso JR, Kamišalić A. Modelling and assessing one- and two-drug dose titrations. Artif Intell Med 2022; 131:102343. [DOI: 10.1016/j.artmed.2022.102343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
|
7
|
An Ontology to Support Automatic Drug Dose Titration. Artif Intell Med 2022. [DOI: 10.1007/978-3-031-09342-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Machine Learning: An Overview and Applications in Pharmacogenetics. Genes (Basel) 2021; 12:genes12101511. [PMID: 34680905 PMCID: PMC8535911 DOI: 10.3390/genes12101511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
This narrative review aims to provide an overview of the main Machine Learning (ML) techniques and their applications in pharmacogenetics (such as antidepressant, anti-cancer and warfarin drugs) over the past 10 years. ML deals with the study, the design and the development of algorithms that give computers capability to learn without being explicitly programmed. ML is a sub-field of artificial intelligence, and to date, it has demonstrated satisfactory performance on a wide range of tasks in biomedicine. According to the final goal, ML can be defined as Supervised (SML) or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the research. On the other hand, UML techniques are used when the outcome is not known, and the goal of the research is unveiling the underlying structure of the data. The increasing use of sophisticated ML algorithms will likely be instrumental in improving knowledge in pharmacogenetics.
Collapse
|
9
|
|