1
|
Oh W, Jayaraman P, Tandon P, Chaddha US, Kovatch P, Charney AW, Glicksberg BS, Nadkarni GN. A novel method leveraging time series data to improve subphenotyping and application in critically ill patients with COVID-19. Artif Intell Med 2024; 148:102750. [PMID: 38325922 PMCID: PMC10864255 DOI: 10.1016/j.artmed.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
Computational subphenotyping, a data-driven approach to understanding disease subtypes, is a prominent topic in medical research. Numerous ongoing studies are dedicated to developing advanced computational subphenotyping methods for cross-sectional data. However, the potential of time-series data has been underexplored until now. Here, we propose a Multivariate Levenshtein Distance (MLD) that can account for address correlation in multiple discrete features over time-series data. Our algorithm has two distinct components: it integrates an optimal threshold score to enhance the sensitivity in discriminating between pairs of instances, and the MLD itself. We have applied the proposed distance metrics on the k-means clustering algorithm to derive temporal subphenotypes from time-series data of biomarkers and treatment administrations from 1039 critically ill patients with COVID-19 and compare its effectiveness to standard methods. In conclusion, the Multivariate Levenshtein Distance metric is a novel method to quantify the distance from multiple discrete features over time-series data and demonstrates superior clustering performance among competing time-series distance metrics.
Collapse
Affiliation(s)
- Wonsuk Oh
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Data-Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Pushkala Jayaraman
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Data-Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pranai Tandon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Udit S Chaddha
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricia Kovatch
- Department of Scientific Computing, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander W Charney
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Character Biosciences, New York, NY, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Data-Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Herzeel C, D’Hondt E, Vandeweerd V, Botermans W, Akand M, Van der Aa F, Wuyts R, Verachtert W. A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development. PLOS DIGITAL HEALTH 2023; 2:e0000384. [PMID: 37992021 PMCID: PMC10664923 DOI: 10.1371/journal.pdig.0000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/22/2023] [Indexed: 11/24/2023]
Abstract
We present the Patient Trajectory Analysis Library (PTRA), a software package for explorative analysis of patient development. PTRA provides the tools for extracting statistically relevant trajectories from the medical event histories of a patient population. These trajectories can additionally be clustered for visual inspection and identifying key events in patient progression. The algorithms of PTRA are based on a statistical method developed previously by Jensen et al, but we contribute several modifications and extensions to enable the implementation of a practical tool. This includes a new clustering strategy, filter mechanisms for controlling analysis to specific cohorts and for controlling trajectory output, a parallel implementation that executes on a single server rather than a high-performance computing (HPC) cluster, etc. PTRA is furthermore open source and the code is organized as a framework so researchers can reuse it to analyze new data sets. We illustrate our tool by discussing trajectories extracted from the TriNetX Dataworks database for analyzing bladder cancer development. We show this experiment uncovers medically sound trajectories for bladder cancer.
Collapse
Affiliation(s)
| | | | - Valerie Vandeweerd
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wouter Botermans
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | | | |
Collapse
|