1
|
Tabari P, Costagliola G, De Rosa M, Boeker M. State-of-the-Art Fast Healthcare Interoperability Resources (FHIR)-Based Data Model and Structure Implementations: Systematic Scoping Review. JMIR Med Inform 2024; 12:e58445. [PMID: 39316433 PMCID: PMC11472501 DOI: 10.2196/58445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/28/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Data models are crucial for clinical research as they enable researchers to fully use the vast amount of clinical data stored in medical systems. Standardized data and well-defined relationships between data points are necessary to guarantee semantic interoperability. Using the Fast Healthcare Interoperability Resources (FHIR) standard for clinical data representation would be a practical methodology to enhance and accelerate interoperability and data availability for research. OBJECTIVE This research aims to provide a comprehensive overview of the state-of-the-art and current landscape in FHIR-based data models and structures. In addition, we intend to identify and discuss the tools, resources, limitations, and other critical aspects mentioned in the selected research papers. METHODS To ensure the extraction of reliable results, we followed the instructions of the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist. We analyzed the indexed articles in PubMed, Scopus, Web of Science, IEEE Xplore, the ACM Digital Library, and Google Scholar. After identifying, extracting, and assessing the quality and relevance of the articles, we synthesized the extracted data to identify common patterns, themes, and variations in the use of FHIR-based data models and structures across different studies. RESULTS On the basis of the reviewed articles, we could identify 2 main themes: dynamic (pipeline-based) and static data models. The articles were also categorized into health care use cases, including chronic diseases, COVID-19 and infectious diseases, cancer research, acute or intensive care, random and general medical notes, and other conditions. Furthermore, we summarized the important or common tools and approaches of the selected papers. These items included FHIR-based tools and frameworks, machine learning approaches, and data storage and security. The most common resource was "Observation" followed by "Condition" and "Patient." The limitations and challenges of developing data models were categorized based on the issues of data integration, interoperability, standardization, performance, and scalability or generalizability. CONCLUSIONS FHIR serves as a highly promising interoperability standard for developing real-world health care apps. The implementation of FHIR modeling for electronic health record data facilitates the integration, transmission, and analysis of data while also advancing translational research and phenotyping. Generally, FHIR-based exports of local data repositories improve data interoperability for systems and data warehouses across different settings. However, ongoing efforts to address existing limitations and challenges are essential for the successful implementation and integration of FHIR data models.
Collapse
Affiliation(s)
- Parinaz Tabari
- Department of Informatics, University of Salerno, Fisciano, Italy
| | | | - Mattia De Rosa
- Department of Informatics, University of Salerno, Fisciano, Italy
| | - Martin Boeker
- Institute for Artificial Intelligence and Informatics in Medicine, Medical Center rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Gazzarata R, Almeida J, Lindsköld L, Cangioli G, Gaeta E, Fico G, Chronaki CE. HL7 Fast Healthcare Interoperability Resources (HL7 FHIR) in digital healthcare ecosystems for chronic disease management: Scoping review. Int J Med Inform 2024; 189:105507. [PMID: 38870885 DOI: 10.1016/j.ijmedinf.2024.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The prevalence of chronic diseases has shifted the burden of disease from incidental acute inpatient admissions to long-term coordinated care across healthcare institutions and the patient's home. Digital healthcare ecosystems emerge to target increasing healthcare costs and invest in standard Application Programming Interfaces (API), such as HL7 Fast Healthcare Interoperability Resources (HL7 FHIR) for trusted data flows. OBJECTIVES This scoping review assessed the role and impact of HL7 FHIR and associated Implementation Guides (IGs) in digital healthcare ecosystems focusing on chronic disease management. METHODS To study trends and developments relevant to HL7 FHIR, a scoping review of the scientific and gray English literature from 2017 to 2023 was used. RESULTS The selection of 93 of 524 scientific papers reviewed in English indicates that the popularity of HL7 FHIR as a robust technical interface standard for the health sector has been steadily rising since its inception in 2010, reaching a peak in 2021. Digital Health applications use HL7 FHIR in cancer (45 %), cardiovascular disease (CVD) (more than 15 %), and diabetes (almost 15 %). The scoping review revealed that references to HL7 FHIR IGs are limited to ∼ 20 % of articles reviewed. HL7 FHIR R4 was most frequently referenced when the HL7 FHIR version was mentioned. In HL7 FHIR IGs registries and the internet, we found 35 HL7 FHIR IGs addressing chronic disease management, i.e., cancer (40 %), chronic disease management (25 %), and diabetes (20 %). HL7 FHIR IGs frequently complement the information in the article. CONCLUSIONS HL7 FHIR matures with each revision of the standard as HL7 FHIR IGs are developed with validated data sets, common shared HL7 FHIR resources, and supporting tools. Referencing HL7 FHIR IGs cataloged in official registries and in scientific publications is recommended to advance data quality and facilitate mutual learning in growing digital healthcare ecosystems that nurture interoperability in digital health innovation.
Collapse
Affiliation(s)
- Roberta Gazzarata
- HL7 Europe Foundation, 38-40 Square de Meeus, Brussels, 1000, Belgium; Healthropy Srl, Corso Vittorio Veneto 14B, Savona, 17100, Italy.
| | - Joao Almeida
- HL7 Europe Foundation, 38-40 Square de Meeus, Brussels, 1000, Belgium; MEDCIDS - Faculty of Medicine of University of Porto, Porto, Portugal; PDH - Pharma Data Hub, Porto, Portugal.
| | - Lars Lindsköld
- European Federation for Medical Informatics, Ch de Maillefer 37, CH-1052 Le Mont-sur-Lausanne, Switzerland; SciLifeLab Datacenter, University of Uppsala, S-752 37 Uppsala, Sweden.
| | - Giorgio Cangioli
- HL7 Europe Foundation, 38-40 Square de Meeus, Brussels, 1000, Belgium.
| | - Eugenio Gaeta
- Life Supporting Technologies, Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain.
| | - Giuseppe Fico
- Life Supporting Technologies, Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain.
| | - Catherine E Chronaki
- HL7 Europe Foundation, 38-40 Square de Meeus, Brussels, 1000, Belgium; European Federation for Medical Informatics, Ch de Maillefer 37, CH-1052 Le Mont-sur-Lausanne, Switzerland.
| |
Collapse
|
3
|
Giannoula A, Comas M, Castells X, Estupiñán-Romero F, Bernal-Delgado E, Sanz F, Sala M. Exploring long-term breast cancer survivors' care trajectories using dynamic time warping-based unsupervised clustering. J Am Med Inform Assoc 2024; 31:820-831. [PMID: 38193340 PMCID: PMC10990519 DOI: 10.1093/jamia/ocad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVES Long-term breast cancer survivors (BCS) constitute a complex group of patients, whose number is estimated to continue rising, such that, a dedicated long-term clinical follow-up is necessary. MATERIALS AND METHODS A dynamic time warping-based unsupervised clustering methodology is presented in this article for the identification of temporal patterns in the care trajectories of 6214 female BCS of a large longitudinal retrospective cohort of Spain. The extracted care-transition patterns are graphically represented using directed network diagrams with aggregated patient and time information. A control group consisting of 12 412 females without breast cancer is also used for comparison. RESULTS The use of radiology and hospital admission are explored as patterns of special interest. In the generated networks, a more intense and complex use of certain healthcare services (eg, radiology, outpatient care, hospital admission) is shown and quantified for the BCS. Higher mortality rates and numbers of comorbidities are observed in various transitions and compared with non-breast cancer. It is also demonstrated how a wealth of patient and time information can be revealed from individual service transitions. DISCUSSION The presented methodology permits the identification and descriptive visualization of temporal patterns of the usage of healthcare services by the BCS, that otherwise would remain hidden in the trajectories. CONCLUSION The results could provide the basis for better understanding the BCS' circulation through the health system, with a view to more efficiently predicting their forthcoming needs and thus designing more effective personalized survivorship care plans.
Collapse
Affiliation(s)
- Alexia Giannoula
- Epidemiology and Evaluation Department, Hospital del Mar Research Institute (IMIM), Barcelona, 08003, Spain
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences (MELIS), Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- RICAPPS Red de Investigación en Cronicidad, Atención Primaria Y Promoción de la Salud, Spain
| | - Mercè Comas
- Epidemiology and Evaluation Department, Hospital del Mar Research Institute (IMIM), Barcelona, 08003, Spain
- RICAPPS Red de Investigación en Cronicidad, Atención Primaria Y Promoción de la Salud, Spain
| | - Xavier Castells
- Epidemiology and Evaluation Department, Hospital del Mar Research Institute (IMIM), Barcelona, 08003, Spain
- RICAPPS Red de Investigación en Cronicidad, Atención Primaria Y Promoción de la Salud, Spain
| | - Francisco Estupiñán-Romero
- RICAPPS Red de Investigación en Cronicidad, Atención Primaria Y Promoción de la Salud, Spain
- Data Science for Health Services and Policy Research Group, Institute for Health Sciences (IACS), Zaragoza, Aragon, 50009, Spain
| | - Enrique Bernal-Delgado
- RICAPPS Red de Investigación en Cronicidad, Atención Primaria Y Promoción de la Salud, Spain
- Data Science for Health Services and Policy Research Group, Institute for Health Sciences (IACS), Zaragoza, Aragon, 50009, Spain
| | - Ferran Sanz
- Epidemiology and Evaluation Department, Hospital del Mar Research Institute (IMIM), Barcelona, 08003, Spain
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences (MELIS), Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Sala
- Epidemiology and Evaluation Department, Hospital del Mar Research Institute (IMIM), Barcelona, 08003, Spain
- RICAPPS Red de Investigación en Cronicidad, Atención Primaria Y Promoción de la Salud, Spain
| |
Collapse
|
4
|
Šafran V, Lin S, Nateqi J, Martin AG, Smrke U, Ariöz U, Plohl N, Rojc M, Bēma D, Chávez M, Horvat M, Mlakar I. Multilingual Framework for Risk Assessment and Symptom Tracking (MRAST). SENSORS (BASEL, SWITZERLAND) 2024; 24:1101. [PMID: 38400259 PMCID: PMC10892413 DOI: 10.3390/s24041101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The importance and value of real-world data in healthcare cannot be overstated because it offers a valuable source of insights into patient experiences. Traditional patient-reported experience and outcomes measures (PREMs/PROMs) often fall short in addressing the complexities of these experiences due to subjectivity and their inability to precisely target the questions asked. In contrast, diary recordings offer a promising solution. They can provide a comprehensive picture of psychological well-being, encompassing both psychological and physiological symptoms. This study explores how using advanced digital technologies, i.e., automatic speech recognition and natural language processing, can efficiently capture patient insights in oncology settings. We introduce the MRAST framework, a simplified way to collect, structure, and understand patient data using questionnaires and diary recordings. The framework was validated in a prospective study with 81 colorectal and 85 breast cancer survivors, of whom 37 were male and 129 were female. Overall, the patients evaluated the solution as well made; they found it easy to use and integrate into their daily routine. The majority (75.3%) of the cancer survivors participating in the study were willing to engage in health monitoring activities using digital wearable devices daily for an extended period. Throughout the study, there was a noticeable increase in the number of participants who perceived the system as having excellent usability. Despite some negative feedback, 44.44% of patients still rated the app's usability as above satisfactory (i.e., 7.9 on 1-10 scale) and the experience with diary recording as above satisfactory (i.e., 7.0 on 1-10 scale). Overall, these findings also underscore the significance of user testing and continuous improvement in enhancing the usability and user acceptance of solutions like the MRAST framework. Overall, the automated extraction of information from diaries represents a pivotal step toward a more patient-centered approach, where healthcare decisions are based on real-world experiences and tailored to individual needs. The potential usefulness of such data is enormous, as it enables better measurement of everyday experiences and opens new avenues for patient-centered care.
Collapse
Affiliation(s)
- Valentino Šafran
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.Š.); (U.S.); (U.A.); (M.R.)
| | - Simon Lin
- Science Department, Symptoma GmbH, 1030 Vienna, Austria (A.G.M.)
- Department of Internal Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jama Nateqi
- Science Department, Symptoma GmbH, 1030 Vienna, Austria (A.G.M.)
- Department of Internal Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Urška Smrke
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.Š.); (U.S.); (U.A.); (M.R.)
| | - Umut Ariöz
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.Š.); (U.S.); (U.A.); (M.R.)
| | - Nejc Plohl
- Department of Psychology, Faculty of Arts, University of Maribor, 2000 Maribor, Slovenia;
| | - Matej Rojc
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.Š.); (U.S.); (U.A.); (M.R.)
| | - Dina Bēma
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia;
| | - Marcela Chávez
- Department of Information System Management, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium;
| | - Matej Horvat
- Department of Oncology, University Medical Centre Maribor, 2000 Maribor, Slovenia;
| | - Izidor Mlakar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.Š.); (U.S.); (U.A.); (M.R.)
| |
Collapse
|
5
|
Nan J, Xu LQ. Designing Interoperable Health Care Services Based on Fast Healthcare Interoperability Resources: Literature Review. JMIR Med Inform 2023; 11:e44842. [PMID: 37603388 PMCID: PMC10477925 DOI: 10.2196/44842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND With the advent of the digital economy and the aging population, the demand for diversified health care services and innovative care delivery models has been overwhelming. This trend has accelerated the urgency to implement effective and efficient data exchange and service interoperability, which underpins coordinated care services among tiered health care institutions, improves the quality of oversight of regulators, and provides vast and comprehensive data collection to support clinical medicine and health economics research, thus improving the overall service quality and patient satisfaction. To meet this demand and facilitate the interoperability of IT systems of stakeholders, after years of preparation, Health Level 7 formally introduced, in 2014, the Fast Healthcare Interoperability Resources (FHIR) standard. It has since continued to evolve. FHIR depends on the Implementation Guide (IG) to ensure feasibility and consistency while developing an interoperable health care service. The IG defines rules with associated documentation on how FHIR resources are used to tackle a particular problem. However, a gap remains between IGs and the process of building actual services because IGs are rules without specifying concrete methods, procedures, or tools. Thus, stakeholders may feel it nontrivial to participate in the ecosystem, giving rise to the need for a more actionable practice guideline (PG) for promoting FHIR's fast adoption. OBJECTIVE This study aimed to propose a general FHIR PG to facilitate stakeholders in the health care ecosystem to understand FHIR and quickly develop interoperable health care services. METHODS We selected a collection of FHIR-related papers about the latest studies or use cases on designing and building FHIR-based interoperable health care services and tagged each use case as belonging to 1 of the 3 dominant innovation feature groups that are also associated with practice stages, that is, data standardization, data management, and data integration. Next, we reviewed each group's detailed process and key techniques to build respective care services and collate a complete FHIR PG. Finally, as an example, we arbitrarily selected a use case outside the scope of the reviewed papers and mapped it back to the FHIR PG to demonstrate the effectiveness and generalizability of the PG. RESULTS The FHIR PG includes 2 core elements: one is a practice design that defines the responsibilities of stakeholders and outlines the complete procedure from data to services, and the other is a development architecture for practice design, which lists the available tools for each practice step and provides direct and actionable recommendations. CONCLUSIONS The FHIR PG can bridge the gap between IGs and the process of building actual services by proposing actionable methods, procedures, and tools. It assists stakeholders in identifying participants' roles, managing the scope of responsibilities, and developing relevant modules, thus helping promote FHIR-based interoperable health care services.
Collapse
Affiliation(s)
- Jingwen Nan
- Health IT Research, China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Li-Qun Xu
- Health IT Research, China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| |
Collapse
|
6
|
González-Castro L, Chávez M, Duflot P, Bleret V, Martin AG, Zobel M, Nateqi J, Lin S, Pazos-Arias JJ, Del Fiol G, López-Nores M. Machine Learning Algorithms to Predict Breast Cancer Recurrence Using Structured and Unstructured Sources from Electronic Health Records. Cancers (Basel) 2023; 15:2741. [PMID: 37345078 DOI: 10.3390/cancers15102741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
Recurrence is a critical aspect of breast cancer (BC) that is inexorably tied to mortality. Reuse of healthcare data through Machine Learning (ML) algorithms offers great opportunities to improve the stratification of patients at risk of cancer recurrence. We hypothesized that combining features from structured and unstructured sources would provide better prediction results for 5-year cancer recurrence than either source alone. We collected and preprocessed clinical data from a cohort of BC patients, resulting in 823 valid subjects for analysis. We derived three sets of features: structured information, features from free text, and a combination of both. We evaluated the performance of five ML algorithms to predict 5-year cancer recurrence and selected the best-performing to test our hypothesis. The XGB (eXtreme Gradient Boosting) model yielded the best performance among the five evaluated algorithms, with precision = 0.900, recall = 0.907, F1-score = 0.897, and area under the receiver operating characteristic AUROC = 0.807. The best prediction results were achieved with the structured dataset, followed by the unstructured dataset, while the combined dataset achieved the poorest performance. ML algorithms for BC recurrence prediction are valuable tools to improve patient risk stratification, help with post-cancer monitoring, and plan more effective follow-up. Structured data provides the best results when fed to ML algorithms. However, an approach based on natural language processing offers comparable results while potentially requiring less mapping effort.
Collapse
Affiliation(s)
| | - Marcela Chávez
- Department of Information System Management, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Patrick Duflot
- Department of Information System Management, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Valérie Bleret
- Senology Department, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | | | - Marc Zobel
- Science Department, Symptoma GmbH, 1030 Vienna, Austria
| | - Jama Nateqi
- Science Department, Symptoma GmbH, 1030 Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Simon Lin
- Science Department, Symptoma GmbH, 1030 Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - José J Pazos-Arias
- atlanTTic Research Center, Department of Telematics Engineering, University of Vigo, 36310 Vigo, Spain
| | - Guilherme Del Fiol
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Martín López-Nores
- atlanTTic Research Center, Department of Telematics Engineering, University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
7
|
Manzo G, Pannatier Y, Duflot P, Kolh P, Chavez M, Bleret V, Calvaresi D, Jimenez-Del-Toro O, Schumacher M, Calbimonte JP. Breast cancer survival analysis agents for clinical decision support. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107373. [PMID: 36720187 DOI: 10.1016/j.cmpb.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Personalized support and assistance are essential for cancer survivors, given the physical and psychological consequences they have to suffer after all the treatments and conditions associated with this illness. Digital assistive technologies have proved to be effective in enhancing the quality of life of cancer survivors, for instance, through physical exercise monitoring and recommendation or emotional support and prediction. To maximize the efficacy of these techniques, it is challenging to develop accurate models of patient trajectories, which are typically fed with information acquired from retrospective datasets. This paper presents a Machine Learning-based survival model embedded in a clinical decision system architecture for predicting cancer survivors' trajectories. The proposed architecture of the system, named PERSIST, integrates the enrichment and pre-processing of clinical datasets coming from different sources and the development of clinical decision support modules. Moreover, the model includes detecting high-risk markers, which have been evaluated in terms of performance using both a third-party dataset of breast cancer patients and a retrospective dataset collected in the context of the PERSIST clinical study.
Collapse
Affiliation(s)
- Gaetano Manzo
- University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland; National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Yvan Pannatier
- University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
| | - Patrick Duflot
- CHU of Liege, Department of Information System Management, Belgium
| | - Philippe Kolh
- CHU of Liege, Department of Information System Management, Belgium
| | - Marcela Chavez
- CHU of Liege, Department of Information System Management, Belgium
| | | | - Davide Calvaresi
- University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
| | | | - Michael Schumacher
- University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
| | - Jean-Paul Calbimonte
- University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland; The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| |
Collapse
|
8
|
Tseng TW, Su CF, Lai F. Fast Healthcare Interoperability Resources for Inpatient Deterioration Detection With Time-Series Vital Signs: Design and Implementation Study. JMIR Med Inform 2022; 10:e42429. [PMID: 36227636 PMCID: PMC9614630 DOI: 10.2196/42429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background Vital signs have been widely adopted in in-hospital cardiac arrest (IHCA) assessment, which plays an important role in inpatient deterioration detection. As the number of early warning systems and artificial intelligence applications increases, health care information exchange and interoperability are becoming more complex and difficult. Although Health Level 7 Fast Healthcare Interoperability Resources (FHIR) have already developed a vital signs profile, it is not sufficient to support IHCA applications or machine learning–based models. Objective In this paper, for IHCA instances with vital signs, we define a new implementation guide that includes data mapping, a system architecture, a workflow, and FHIR applications. Methods We interviewed 10 experts regarding health care system integration and defined an implementation guide. We then developed the FHIR Extract Transform Load to map data to FHIR resources. We also integrated an early warning system and machine learning pipeline. Results The study data set includes electronic health records of adult inpatients who visited the En-Chu-Kong hospital. Medical staff regularly measured these vital signs at least 2 to 3 times per day during the day, night, and early morning. We used pseudonymization to protect patient privacy. Then, we converted the vital signs to FHIR observations in the JSON format using the FHIR Extract Transform Load application. The measured vital signs include systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, and body temperature. According to clinical requirements, we also extracted the electronic health record information to the FHIR server. Finally, we integrated an early warning system and machine learning pipeline using the FHIR RESTful application programming interface. Conclusions We successfully demonstrated a process that standardizes health care information for inpatient deterioration detection using vital signs. Based on the FHIR definition, we also provided an implementation guide that includes data mapping, an integration process, and IHCA assessment using vital signs. We also proposed a clarifying system architecture and possible workflows. Based on FHIR, we integrated the 3 different systems in 1 dashboard system, which can effectively solve the complexity of the system in the medical staff workflow.
Collapse
Affiliation(s)
- Tzu-Wei Tseng
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan
| | - Chang-Fu Su
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City, Taiwan
| | - Feipei Lai
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
9
|
Gruendner J, Deppenwiese N, Folz M, Köhler T, Kroll B, Prokosch HU, Rosenau L, Rühle M, Scheidl MA, Schüttler C, Sedlmayr B, Twrdik A, Kiel A, Majeed RW. Architecture for a feasibility query portal for distributed COVID-19 Fast Healthcare Interoperability Resources (FHIR) patient data repositories: Design and Implementation Study (Preprint). JMIR Med Inform 2022; 10:e36709. [PMID: 35486893 PMCID: PMC9135115 DOI: 10.2196/36709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background An essential step in any medical research project after identifying the research question is to determine if there are sufficient patients available for a study and where to find them. Pursuing digital feasibility queries on available patient data registries has proven to be an excellent way of reusing existing real-world data sources. To support multicentric research, these feasibility queries should be designed and implemented to run across multiple sites and securely access local data. Working across hospitals usually involves working with different data formats and vocabularies. Recently, the Fast Healthcare Interoperability Resources (FHIR) standard was developed by Health Level Seven to address this concern and describe patient data in a standardized format. The Medical Informatics Initiative in Germany has committed to this standard and created data integration centers, which convert existing data into the FHIR format at each hospital. This partially solves the interoperability problem; however, a distributed feasibility query platform for the FHIR standard is still missing. Objective This study described the design and implementation of the components involved in creating a cross-hospital feasibility query platform for researchers based on FHIR resources. This effort was part of a large COVID-19 data exchange platform and was designed to be scalable for a broad range of patient data. Methods We analyzed and designed the abstract components necessary for a distributed feasibility query. This included a user interface for creating the query, backend with an ontology and terminology service, middleware for query distribution, and FHIR feasibility query execution service. Results We implemented the components described in the Methods section. The resulting solution was distributed to 33 German university hospitals. The functionality of the comprehensive network infrastructure was demonstrated using a test data set based on the German Corona Consensus Data Set. A performance test using specifically created synthetic data revealed the applicability of our solution to data sets containing millions of FHIR resources. The solution can be easily deployed across hospitals and supports feasibility queries, combining multiple inclusion and exclusion criteria using standard Health Level Seven query languages such as Clinical Quality Language and FHIR Search. Developing a platform based on multiple microservices allowed us to create an extendable platform and support multiple Health Level Seven query languages and middleware components to allow integration with future directions of the Medical Informatics Initiative. Conclusions We designed and implemented a feasibility platform for distributed feasibility queries, which works directly on FHIR-formatted data and distributed it across 33 university hospitals in Germany. We showed that developing a feasibility platform directly on the FHIR standard is feasible.
Collapse
Affiliation(s)
- Julian Gruendner
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Noemi Deppenwiese
- Center of Medical Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Folz
- Institute of Medical Informatics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Köhler
- Federated Information Systems, German Cancer Research Center, Heidelberg, Germany
| | - Björn Kroll
- IT Center for Clinical Research, University of Lübeck, Lübeck, Germany
| | - Hans-Ulrich Prokosch
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lorenz Rosenau
- IT Center for Clinical Research, University of Lübeck, Lübeck, Germany
| | - Mathias Rühle
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Marc-Anton Scheidl
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Schüttler
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Brita Sedlmayr
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander Twrdik
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Alexander Kiel
- Federated Information Systems, German Cancer Research Center, Heidelberg, Germany
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Raphael W Majeed
- Institute for Medical Informatics, University Clinic Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- Universities of Giessen and Marburg Lung Center, German Centre For Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Vorisek CN, Lehne M, Klopfenstein SAI, Mayer PJ, Bartschke A, Haese T, Thun S. Fast Healthcare Interoperability Resources (FHIR) for Interoperability in Health Research: A Systematic Review (Preprint). JMIR Med Inform 2021; 10:e35724. [PMID: 35852842 PMCID: PMC9346559 DOI: 10.2196/35724] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/22/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
Background The standard Fast Healthcare Interoperability Resources (FHIR) is widely used in health information technology. However, its use as a standard for health research is still less prevalent. To use existing data sources more efficiently for health research, data interoperability becomes increasingly important. FHIR provides solutions by offering resource domains such as “Public Health & Research” and “Evidence-Based Medicine” while using already established web technologies. Therefore, FHIR could help standardize data across different data sources and improve interoperability in health research. Objective The aim of our study was to provide a systematic review of existing literature and determine the current state of FHIR implementations in health research and possible future directions. Methods We searched the PubMed/MEDLINE, Embase, Web of Science, IEEE Xplore, and Cochrane Library databases for studies published from 2011 to 2022. Studies investigating the use of FHIR in health research were included. Articles published before 2011, abstracts, reviews, editorials, and expert opinions were excluded. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and registered this study with PROSPERO (CRD42021235393). Data synthesis was done in tables and figures. Results We identified a total of 998 studies, of which 49 studies were eligible for inclusion. Of the 49 studies, most (73%, n=36) covered the domain of clinical research, whereas the remaining studies focused on public health or epidemiology (6%, n=3) or did not specify their research domain (20%, n=10). Studies used FHIR for data capture (29%, n=14), standardization of data (41%, n=20), analysis (12%, n=6), recruitment (14%, n=7), and consent management (4%, n=2). Most (55%, 27/49) of the studies had a generic approach, and 55% (12/22) of the studies focusing on specific medical specialties (infectious disease, genomics, oncology, environmental health, imaging, and pulmonary hypertension) reported their solutions to be conferrable to other use cases. Most (63%, 31/49) of the studies reported using additional data models or terminologies: Systematized Nomenclature of Medicine Clinical Terms (29%, n=14), Logical Observation Identifiers Names and Codes (37%, n=18), International Classification of Diseases 10th Revision (18%, n=9), Observational Medical Outcomes Partnership common data model (12%, n=6), and others (43%, n=21). Only 4 (8%) studies used a FHIR resource from the domain “Public Health & Research.” Limitations using FHIR included the possible change in the content of FHIR resources, safety, legal matters, and the need for a FHIR server. Conclusions Our review found that FHIR can be implemented in health research, and the areas of application are broad and generalizable in most use cases. The implementation of international terminologies was common, and other standards such as the Observational Medical Outcomes Partnership common data model could be used as a complement to FHIR. Limitations such as the change of FHIR content, lack of FHIR implementation, safety, and legal matters need to be addressed in future releases to expand the use of FHIR and, therefore, interoperability in health research.
Collapse
Affiliation(s)
- Carina Nina Vorisek
- Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Lehne
- Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Anne Ines Klopfenstein
- Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Josephine Mayer
- Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Bartschke
- Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Haese
- Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Thun
- Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|