1
|
Paul S, Schrobback K, Tran PA, Meinert C, Davern JW, Weekes A, Nedunchezhiyan U, Klein TJ. GelMA-glycol chitosan hydrogels for cartilage regeneration: The role of uniaxial mechanical stimulation in enhancing mechanical, adhesive, and biochemical properties. APL Bioeng 2023; 7:036114. [PMID: 37692373 PMCID: PMC10492648 DOI: 10.1063/5.0160472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Untreated osteochondral defects are a leading cause of osteoarthritis, a condition that places a heavy burden on both patients and orthopedic surgeons. Although tissue engineering has shown promise for creating mechanically similar cartilage-like constructs, their integration with cartilage remains elusive. Therefore, a formulation of biodegradable, biocompatible biomaterial with sufficient mechanical and adhesive properties for cartilage repair is required. To accomplish this, we prepared biocompatible, photo-curable, mechanically robust, and highly adhesive GelMA-glycol chitosan (GelMA-GC) hydrogels. GelMA-GC hydrogels had a modulus of 283 kPa and provided a biocompatible environment (>70% viability of embedded chondrocytes) in long-term culture within a bovine cartilage ring. The adhesive strength of bovine chondrocyte-laden GelMA-GC hydrogel to bovine cartilage increased from 38 to 52 kPa over four weeks of culture. Moreover, intermittent uniaxial mechanical stimulation enhanced the adhesive strength to ∼60 kPa, indicating that the cartilage-hydrogel integration could remain secure and functional under dynamic loading conditions. Furthermore, gene expression data and immunofluorescence staining revealed the capacity of chondrocytes in GelMA-GC hydrogel to synthesize chondrogenic markers (COL2A1 and ACAN), suggesting the potential for tissue regeneration. The promising in vitro results of this work motivate further exploration of the potential of photo-curable GelMA-GC bioadhesive hydrogels for cartilage repair and regeneration.
Collapse
Affiliation(s)
| | - Karsten Schrobback
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
2
|
Raju V, Koorata PK. Computational assessment on the impact of collagen fiber orientation in cartilages on healthy and arthritic knee kinetics/kinematics. Med Eng Phys 2023; 117:103997. [PMID: 37331751 DOI: 10.1016/j.medengphy.2023.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND The inhomogeneous distribution of collagen fiber in cartilage can substantially influence the knee kinematics. This becomes vital for understanding the mechanical response of soft tissues, and cartilage deterioration including osteoarthritis (OA). Though the conventional computational models consider geometrical heterogeneity along with fiber reinforcements in the cartilage model as material heterogeneity, the influence of fiber orientation on knee kinetics and kinematics is not fully explored. This work examines how the collagen fiber orientation in the cartilage affects the healthy (intact knee) and arthritic knee response over multiple gait activities like running and walking. METHODS A 3D finite element knee joint model is used to compute the articular cartilage response during the gait cycle. A fiber-reinforced porous hyper elastic (FRPHE) material is used to model the soft tissue. A split-line pattern is used to implement the fiber orientation in femoral and tibial cartilage. Four distinct intact cartilage models and three OA models are simulated to assess the impact of the orientation of collagen fibers in a depth wise direction. The cartilage models with fibers oriented in parallel, perpendicular, and inclined to the articular surface are investigated for multiple knee kinematics and kinetics. FINDINGS The comparison of models with fiber orientation parallel to articulating surface for walking and running gait has the highest elastic stress and fluid pressure compared with inclined and perpendicular fiber-oriented models. Also, the maximum contact pressure is observed to be higher in the case of intact models during the walking cycle than for OA models. In contrast, the maximum contact pressure is higher during running in OA models than in intact models. Additionally, parallel-oriented models produce higher maximum stresses and fluid pressure for walking and running gait than proximal-distal-oriented models. Interestingly, during the walking cycle, the maximum contact pressure with intact models is approximately three times higher than on OA models. In contrast, the OA models exhibit higher contact pressure during the running cycle. INTERPRETATION Overall, the study indicates that collagen orientation is crucial for tissue responsiveness. This investigation provides insights into the development of tailored implants.
Collapse
Affiliation(s)
- Vaishakh Raju
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India
| | - Poornesh Kumar Koorata
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
| |
Collapse
|
3
|
Xu W, Zhu J, Hu J, Xiao L. Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering. Life Sci 2022; 309:121043. [DOI: 10.1016/j.lfs.2022.121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
|
4
|
Gao W, Hasan H, Anderson DE, Lee W. The Role of Mechanically-Activated Ion Channels Piezo1, Piezo2, and TRPV4 in Chondrocyte Mechanotransduction and Mechano-Therapeutics for Osteoarthritis. Front Cell Dev Biol 2022; 10:885224. [PMID: 35602590 PMCID: PMC9114637 DOI: 10.3389/fcell.2022.885224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanical factors play critical roles in the pathogenesis of joint disorders like osteoarthritis (OA), a prevalent progressive degenerative joint disease that causes debilitating pain. Chondrocytes in the cartilage are responsible for extracellular matrix (ECM) turnover, and mechanical stimuli heavily influence cartilage maintenance, degeneration, and regeneration via mechanotransduction of chondrocytes. Thus, understanding the disease-associated mechanotransduction mechanisms can shed light on developing effective therapeutic strategies for OA through targeting mechanotransducers to halt progressive cartilage degeneration. Mechanosensitive Ca2+-permeating channels are robustly expressed in primary articular chondrocytes and trigger force-dependent cartilage remodeling and injury responses. This review discusses the current understanding of the roles of Piezo1, Piezo2, and TRPV4 mechanosensitive ion channels in cartilage health and disease with a highlight on the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA.
Collapse
Affiliation(s)
- Winni Gao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hamza Hasan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Devon E. Anderson
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Whasil Lee
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Shah SS, Mithoefer K. Scientific Developments and Clinical Applications Utilizing Chondrons and Chondrocytes with Matrix for Cartilage Repair. Cartilage 2021; 13:1195S-1205S. [PMID: 33155482 PMCID: PMC8808934 DOI: 10.1177/1947603520968884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Injuries to articular cartilage of the knee are increasingly common. The operative management of these focal chondral lesions continues to be problematic for the treating orthopedic surgeon secondary to the limited regenerative capacity of articular cartilage. The pericellular matrix (PCM) is a specialized, thin layer of the extracellular matrix that immediately surrounds chondrocytes forming a unit together called the chondron. The advancements in our knowledge base with regard to the PCM/chondrons as well as interterritorial matrix has permeated and led to advancements in product development in conjunction with minced cartilage, marrow stimulation, osteochondral allograft, and autologous chondrocyte implantation (ACI). This review intends to summarize recent progress in chondrocytes with matrix research, with an emphasis on the role the PCM/extracellular matrix (ECM) plays for favorable chondrogenic gene expression, as a barrier/filtration unit, and in osteoarthritis. The bulk of the review describes cutting-edge and evolving clinical developments and discuss these developments in light of underlying basic science applications. Clinical applications of chondrocytes with matrix science include Reveille Cartilage Processor, Cartiform, and ACI with Spherox (which was recently recommended for the treatment of grade III or IV articular cartilage defects over 2 cm2 by the National Institute of Health and Care Excellence [NICE] in the United Kingdom). The current article presents a comprehensive overview of both the basic science and clinical results of these next-generation cartilage repair techniques by focusing specifically on the scientific evolution in each category as it pertains with underlying chondrocytes with matrix theory.
Collapse
Affiliation(s)
- Sarav S. Shah
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA,Sarav S. Shah, Division of Sports Medicine,
Department of Orthopaedic Surgery, New England Baptist Hospital, 125 Parker Hill
Avenue, Boston, MA 02120, USA.
| | - Kai Mithoefer
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Komeili A, Otoo BS, Abusara Z, Sibole S, Federico S, Herzog W. Chondrocyte Deformations Under Mild Dynamic Loading Conditions. Ann Biomed Eng 2020; 49:846-857. [PMID: 32959133 DOI: 10.1007/s10439-020-02615-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Dynamic deformation of chondrocytes are associated with cell mechanotransduction and thus may offer a new understanding of the mechanobiology of articular cartilage. Despite extensive research on chondrocyte deformations for static conditions, work for dynamic conditions remains rare. However, it is these dynamic conditions that articular cartilage in joints are exposed to everyday, and that seem to promote biological signaling in chondrocytes. Therefore, the objective of this study was to develop an experimental technique to determine the in situ deformations of chondrocytes when the cartilage is dynamically compressed. We hypothesized that dynamic deformations of chondrocytes vastly differ from those observed under steady-state static strain conditions. Real-time chondrocyte geometry was reconstructed at 10, 15, and 20% compression during ramp compressions with 20% ultimate strain, applied at a strain rate of 0.2% s-1, followed by stress relaxation. Dynamic compressive chondrocyte deformations were non-linear as a function of nominal strain, with large deformations in the early and small deformations in the late part of compression. Early compression (up to about 10%) was associated with chondrocyte volume loss, while late compression (> ~ 10%) was associated with cell deformation but minimal volume loss. Force continued to decrease for 5 min in the stress-relaxation phase, while chondrocyte shape/volume remained unaltered after the first minute of stress-relaxation.
Collapse
Affiliation(s)
- Amin Komeili
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada
| | - Baaba Sekyiwaa Otoo
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Advanced Imaging and Histopathology Core, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Scott Sibole
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Salvatore Federico
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Mechanical and Manufacturing Engineering, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada. .,Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
7
|
Ojanen SP, Finnilä MA, Mäkelä JT, Saarela K, Happonen E, Herzog W, Saarakkala S, Korhonen RK. Anterior cruciate ligament transection of rabbits alters composition, structure and biomechanics of articular cartilage and chondrocyte deformation 2 weeks post-surgery in a site-specific manner. J Biomech 2020; 98:109450. [DOI: 10.1016/j.jbiomech.2019.109450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/31/2022]
|
8
|
Argote PF, Kaplan JT, Poon A, Xu X, Cai L, Emery NC, Pierce DM, Neu CP. Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain, but not stress, to pericellular and cellular regions. Osteoarthritis Cartilage 2019; 27:1822-1830. [PMID: 31526876 PMCID: PMC7028439 DOI: 10.1016/j.joca.2019.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Deleterious impact loading to cartilage initiates post-traumatic osteoarthritis (OA). While cytokine and enzyme levels regulate disease progression, specific mechanical cues that elucidate cellular OA origins merit further investigation. We defined the dominant pericellular and cellular strain/stress transfer mechanisms following bulk-tissue injury associated with cell death. METHOD Using an in vitro model, we investigated rate-dependent loading and spatial localization of cell viability in acute indentation and time-course studies. Atomic force microscopy (AFM) and magnetic resonance imaging (MRI) confirmed depth-wise changes in cartilage micro-/macro-mechanics and structure post-indentation. To understand the transfer of loading to cartilage domains, we computationally modeled full-field strain and stress measures in interstitial matrix, pericellular and cellular regions. RESULTS Chondrocyte viability decreased following rapid impact (80%/s) vs slow loading (0.1%/s) or unloaded controls. Viability was lost immediately during impact within regions near the indenter-tissue contact but did not change over 7 days of tissue culture. AFM studies revealed a loss of stiffness following 80%/s loading, and MRI studies confirmed an increased tensile and shear strain, but not relaxometry. Image-based patterns of chondrocyte viability closely matched computational estimates of amplified maximum principal and shear strain in interstitial matrix, pericellular and cellular regions. CONCLUSION Rapid indentation worsens chondrocyte death and degrades cartilage matrix stiffness in indentation regions. Cell death at high strain rates may be driven by elevated tensile strains, but not matrix stress. Strain amplification beyond critical thresholds in the pericellular matrix and cells may define a point of origin for early damage in post-traumatic OA.
Collapse
Affiliation(s)
- Pablo F. Argote
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jonathan T. Kaplan
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA,Biomechanics Research and Engineering, Natick Soldier RD&E Center, Natick, MA, USA
| | - Alan Poon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Xin Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Luyao Cai
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - David M. Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA,Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA,Corresponding Authors: Corey P. Neu, Tel: (303) 492-7330, , and David M. Pierce, Tel: (860) 486-5088,
| | - Corey P. Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA,Corresponding Authors: Corey P. Neu, Tel: (303) 492-7330, , and David M. Pierce, Tel: (860) 486-5088,
| |
Collapse
|
9
|
PIEZO1 and TRPV4, which Are Distinct Mechano-Sensors in the Osteoblastic MC3T3-E1 Cells, Modify Cell-Proliferation. Int J Mol Sci 2019; 20:ijms20194960. [PMID: 31597314 PMCID: PMC6801562 DOI: 10.3390/ijms20194960] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Mechanical-loading and unloading can modify osteoblast functioning. Ca2+ signaling is one of the earliest events in osteoblasts to induce a mechanical stimulus, thereby demonstrating the importance of the underlying mechanical sensors for the sensation. Here, we examined the mechano-sensitive channels PIEZO1 and TRPV4 were involved in the process of mechano-sensation in the osteoblastic MC3T3-E1 cells. The analysis of mRNA expression revealed a high expression of Piezo1 and Trpv4 in these cells. We also found that a PIEZO1 agonist, Yoda1, induced Ca2+ response and activated cationic currents in these cells. Ca2+ response was elicited when mechanical stimulation (MS), with shear stress, was induced by fluid flow in the MC3T3-E1 cells. Gene knockdown of Piezo1 in the MC3T3-E1 cells, by transfection with siPiezo1, inhibited the Yoda1-induced response, but failed to inhibit the MS-induced response. When MC3T3-E1 cells were transfected with siTrpv4, the MS-induced response was abolished and Yoda1 response was attenuated. Moreover, the MS-induced response was inhibited by a TRPV4 antagonist HC-067047 (HC). Yoda1 response was also inhibited by HC in MC3T3-E1 cells and HEK cells, expressing both PIEZO1 and TRPV4. Meanwhile, the activation of PIEZO1 and TRPV4 reduced the proliferation of MC3T3-E1, which was reversed by knockdown of PIEZO1, and TRPV4, respectively. In conclusion, TRPV4 and PIEZO1 are distinct mechano-sensors in the MC3T3-E1 cells. However, PIEZO1 and TRPV4 modify the proliferation of these cells, implying that PIEZO1 and TRPV4 may be functional in the osteoblastic mechano-transduction. Notably, it is also found that Yoda1 can induce TRPV4-dependent Ca2+ response, when both PIEZO1 and TRPV4 are highly expressed.
Collapse
|
10
|
Farooqi AR, Bader R, van Rienen U. Numerical Study on Electromechanics in Cartilage Tissue with Respect to Its Electrical Properties. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:152-166. [PMID: 30351244 PMCID: PMC6486674 DOI: 10.1089/ten.teb.2018.0214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyaline cartilage undergoes many substantial age-related physiochemical and biomechanical changes that reduce its ability to overcome the effects of mechanical stress and injury. In quest of therapeutic options, magnetic stimulation and electrical stimulation (ES) have been proposed for improving tissue engineering approaches for the repair of articular cartilage. The aim of this study is to summarize in silico investigations involving induced electrical properties of cartilage tissue due to various biophysical stimuli along their respective mathematical descriptions. Based on these, a preliminary numerical study involving electromechanical transduction in bovine cartilage tissue has been carried out using an open source finite element computational software. The simulation results have been compared to experimental results from the literature. This study serves as a basis for further in silico studies to better understand the behavior of hyaline cartilage tissue due to ES and to find an optimal stimulation protocol for the cartilage regeneration. Moreover, it provides an overview of the basic models along with mathematical description and scope for future research regarding electrical behavior of the cartilage tissue using open source software.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- 1 Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
| | - Rainer Bader
- 2 Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, University Medicine Rostock, Rostock, Germany.,3 Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- 1 Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany.,3 Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 2018; 71-72:40-50. [PMID: 29800616 DOI: 10.1016/j.matbio.2018.05.008] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023]
Abstract
Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States.
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Hui Mingalone CK, Liu Z, Hollander JM, Garvey KD, Gibson AL, Banks RE, Zhang M, McAlindon TE, Nielsen HC, Georgakoudi I, Zeng L. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. J Transl Med 2018; 98:656-669. [PMID: 29540857 PMCID: PMC7735372 DOI: 10.1038/s41374-018-0040-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of chronic disability whose mechanism of pathogenesis is largely elusive. Local inflammation is thought to play a key role in OA progression, especially in injury-associated OA. While multiple inflammatory cytokines are detected, the timing and extent of overall inflammatory activities in early OA and the manner by which joint inflammation correlates with cartilage structural damage are still unclear. We induced OA via destabilization of the medial meniscus (DMM) in NFκB luciferase reporter mice, whose bioluminescent signal reflects the activity of NFκB, a central mediator of inflammation. Bioluminescence imaging data showed that DMM and sham control joints had a similar surge of inflammation at 1-week post-surgery, but the DMM joint exhibited a delay in resolution of inflammation in subsequent weeks. A similar trend was observed with synovitis, which we found to be mainly driven by synovial cell density and inflammatory infiltration rather than synovial lining thickness. Interestingly, an association between synovitis and collagen structural damage was observed in early OA. Using Second Harmonic Generation (SHG) imaging, we analyzed collagen fiber organization in articular cartilage. Zonal differences in collagen fiber thickness and organization were observed as soon as OA initiated after DMM surgery, and persisted over time. Even at 1-week post-surgery, the DMM joint showed a decrease in collagen fiber thickness in the deep zone and an increase in collagen fiber disorganization in the superficial zone. Since we were able detect and quantify collagen structural changes very early in OA development by SHG imaging, we concluded that SHG imaging is a highly sensitive tool to evaluate pathological changes in OA. In summary, this study uncovered a dynamic profile of inflammation and joint cartilage damage during OA initiation and development, providing novel insights into OA pathology.
Collapse
Affiliation(s)
- Carrie K. Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Judith M. Hollander
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Kirsten D. Garvey
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Averi L. Gibson
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rose E. Banks
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Division of Rheumatology, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Heber C. Nielsen
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA. .,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Lv M, Zhou Y, Chen X, Han L, Wang L, Lu XL. Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: Roles of calcium sources and cell membrane ion channels. J Orthop Res 2018; 36:730-738. [PMID: 28980722 PMCID: PMC5839963 DOI: 10.1002/jor.23768] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
Mechanical loading on articular cartilage can induce many physical and chemical stimuli on chondrocytes residing in the extracellular matrix (ECM). Intracellular calcium ([Ca2+ ]i ) signaling is among the earliest responses of chondrocytes to physical stimuli, but the [Ca2+ ]i signaling of in situ chondrocytes in loaded cartilage is not fully understood due to the technical challenges in [Ca2+ ]i imaging of chondrocytes in a deforming ECM. This study developed a novel bi-directional microscopy loading device that enables the record of transient [Ca2+ ]i responses of in situ chondrocytes in loaded cartilage. It was found that compressive loading significantly promoted [Ca2+ ]i signaling in chondrocytes with faster [Ca2+ ]i oscillations in comparison to the non-loaded cartilage. Seven [Ca2+ ]i signaling pathways were further investigated by treating the cartilage with antagonists prior to and/or during the loading. Removal of extracellular Ca2+ ions completely abolished the [Ca2+ ]i responses of in situ chondrocytes, suggesting the indispensable role of extracellular Ca2+ sources in initiating the [Ca2+ ]i signaling in chondrocytes. Depletion of intracellular Ca2+ stores, inhibition of PLC-IP3 pathway, and block of purinergic receptors on plasma membrane led to significant reduction in the responsive rate of cells. Three types of ion channels that are regulated by different physical signals, TRPV4 (osmotic and mechanical stress), T-type VGCCs (electrical potential), and mechanical sensitive ion channels (mechanical loading) all demonstrated critical roles in controlling the [Ca2+ ]i responses of in situ chondrocyte in the loaded cartilage. This study provided new knowledge about the [Ca2+ ]i signaling and mechanobiology of chondrocytes in its natural residing environment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:730-738, 2018.
Collapse
Affiliation(s)
- Mengxi Lv
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Xingyu Chen
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716,Corresponding Author: X. Lucas Lu, Ph.D. Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716, Telephone: (302) 831-3581,
| |
Collapse
|
14
|
Khoshgoftar M, Torzilli PA, Maher SA. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J Orthop Res 2018; 36:721-729. [PMID: 29044742 PMCID: PMC5839971 DOI: 10.1002/jor.23774] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 02/04/2023]
Abstract
Understanding the mechanical factors that drive the biological responses of chondrocytes is central to our interpretation of the cascade of events that lead to osteoarthritic changes in articular cartilage. Chondrocyte mechanics is complicated by changes in tissue properties that can occur as osteoarthritis (OA) progresses and by the interaction between macro-scale, tissue level, properties, and micro-scale pericellular matrix (PCM) and local extracellular matrix (ECM) properties, both of which cannot be easily studied using in vitro systems. Our objective was to study the influence of macro- and micro-scale OA-associated structural changes on chondrocyte strains. We developed a multi-scale finite element model of articular cartilage subjected to unconfined loading, for the following three conditions: (i) normal articular cartilage, (ii) OA cartilage (where macro and micro-scale changes in collagen content, matrix modulus, and permeability were modeled), and (iii) early-stage OA cartilage (where only micro-scale changes in matrix modulus were modeled). In the macro-scale model, we found that a depth-dependent strain field was induced in both healthy and OA cartilage and that the middle and superficial zones of OA cartilage had increased tensile and compressive strains. At the micro-scale, chondrocyte shear strains were sensitive to PCM and local ECM properties. In the early-OA model, micro-scale spatial softening of PCM and ECM resulted in a substantial increase (30%) of chondrocyte shear strain, even with no structural changes in macro-scale tissue properties. Our study provides evidence that micromechanical changes at the cellular level may affect chondrocyte activities before macro-scale degradations at the tissue level become apparent. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:721-729, 2018.
Collapse
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States
| | - Peter A. Torzilli
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1087
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1083
| |
Collapse
|
15
|
Han SK, Ronkainen AP, Saarakkala S, Rieppo L, Herzog W, Korhonen RK. Alterations in structural macromolecules and chondrocyte deformations in lapine retropatellar cartilage 9 weeks after anterior cruciate ligament transection. J Orthop Res 2018; 36:342-350. [PMID: 28688215 DOI: 10.1002/jor.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/25/2017] [Indexed: 02/04/2023]
Abstract
The structural integrity and mechanical environment of the articular cartilage matrix directly affect chondrocyte deformations. Rabbit models of early osteoarthritis at 9 weeks following anterior cruciate ligament transection (ACLT) have been shown to alter the deformation behavior of superficial zone chondrocytes in mechanically loaded articular cartilage. However, it is not fully understood whether these changes in cell mechanics are caused by changes in structural macromolecules in the extracellular matrix. Therefore, the purpose of this study was to characterize the proteoglycan content, collagen content, and collagen orientation at 9 weeks post ACLT using microscopic techniques, and relate these changes to the altered cell mechanics observed upon mechanical loading of cartilage. At 9 weeks following ACLT, collagen orientation was significantly (p < 0.05) altered and proteoglycan content was significantly (p < 0.05) reduced in the superficial zone cartilage matrix. These structural changes either in the extracellular or pericellular matrix (ECM and PCM) were also correlated significantly (p < 0.05) with chondrocyte width and height changes, thereby suggesting that chondrocyte deformation response to mechanical compression in early OA changes primarily because of alterations in matrix structure. However, compared to the normal group, proteoglycan content in the PCM from the ACLT group decreased less than that in the surrounding ECM. Therefore, PCM could play a key role to protect excessive chondrocyte deformations in the ACLT group. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:342-350, 2018.
Collapse
Affiliation(s)
- Sang-Kuy Han
- Human Performance Laboratory, University of Calgary, Calgary, Canada.,Advanced Biomedical and Welfare Technology R&BD Group, Korea Institute of Industrial Technology, Cheonan-si, Korea
| | - Ari P Ronkainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Simo Saarakkala
- Faculty of Medicine, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Lassi Rieppo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Halloran JP, Sibole SC, Erdemir A. The potential for intercellular mechanical interaction: simulations of single chondrocyte versus anatomically based distribution. Biomech Model Mechanobiol 2017; 17:159-168. [PMID: 28836010 DOI: 10.1007/s10237-017-0951-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
Abstract
Computational studies of chondrocyte mechanics, and cell mechanics in general, have typically been performed using single cell models embedded in an extracellular matrix construct. The assumption of a single cell microstructural model may not capture intercellular interactions or accurately reflect the macroscale mechanics of cartilage when higher cell concentrations are considered, as may be the case in many instances. Hence, the goal of this study was to compare cell-level response of single and eleven cell biphasic finite element models, where the latter provided an anatomically based cellular distribution representative of the actual number of cells for a commonly used [Formula: see text] edge cubic representative volume in the middle zone of cartilage. Single cell representations incorporated a centered single cell model and eleven location-corrected single cell models, the latter to delineate the role of cell placement in the representative volume element. A stress relaxation test at 10% compressive strain was adopted for all simulations. During transient response, volume- averaged chondrocyte mechanics demonstrated marked differences (up to 60% and typically greater than 10%) for the centered single versus the eleven cell models, yet steady-state loading was similar. Cell location played a marked role, due to inhomogeneity of the displacement and fluid pressure fields at the macroscopic scale. When the single cell representation was corrected for cell location, the transient response was consistent, while steady-state differences on the order of 1-4% were realized, which may be attributed to intercellular mechanical interactions. Anatomical representations of the superficial and deep zones, where cells reside in close proximity, may exhibit greater intercellular interactions, but these have yet to be explored.
Collapse
Affiliation(s)
- Jason P Halloran
- Department of Mechanical Engineering and the Mechanics and Control of Living Systems Lab, Cleveland State University, Cleveland, OH, USA.
| | - Scott C Sibole
- Human Performance Lab, Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Ahmet Erdemir
- Computational Biomodeling (CoBi) Core and the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
17
|
How a decreased fibrillar interconnectivity influences stiffness and swelling properties during early cartilage degeneration. J Mech Behav Biomed Mater 2017; 75:390-398. [PMID: 28803113 DOI: 10.1016/j.jmbbm.2017.07.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The functional coupling between the fibrillar network and the high-swelling proteoglycans largely determines the mechanical properties of the articular cartilage matrix. The objective of this new study was to show specifically how changes in fibrillar interconnectivity arising from early cartilage degeneration influence transverse stiffness and swelling properties at the tissue level. DESIGN Radial zone transverse layers of cartilage matrix were obtained from intact and mildly degenerate bovine patellae. Each layer was then subdivided to assess tensile stiffness, free-swelling response, glycosaminoglycan (GAG) content, and micro- and ultra-structural features. RESULTS The tensile modulus was significantly lower and the degree of swelling significantly higher for the degenerate matrix compared to the intact. Scanning electron microscopy revealed a homogeneous response to transverse strain in the intact cartilage, whereas large non-fibrillar spaces between fibril aggregates were visible in the degenerate matrix. Although there were no significant differences in GAG content it did correlate significantly with stiffness and swelling in the intact samples but not in the degenerate. CONCLUSIONS The lower degree of fibril network interconnectivity in the degenerate matrix led to both a decreased transverse stiffness and reduced resistance to osmotic swelling. This network 'de-structuring' also resulted in a reduced functional interaction between the fibrillar network and the proteoglycans. The study provides new insights into the role of the fibrillar network and how changes in the network arising from the degenerative cascade will influence tissue level behaviour.
Collapse
|
18
|
Linka K, Itskov M, Truhn D, Nebelung S, Thüring J. T2 MR imaging vs. computational modeling of human articular cartilage tissue functionality. J Mech Behav Biomed Mater 2017; 74:477-487. [PMID: 28760354 DOI: 10.1016/j.jmbbm.2017.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022]
Abstract
The detection of early stages of cartilage degeneration remains diagnostically challenging. One promising non-invasive approach is to functionally assess the tissue response to loading by serial magnetic resonance (MR) imaging in terms of T2 mapping under simultaneous mechanical loading. As yet, however, it is not clear which cartilage component contributes to the tissue functionality as assessed by quantitative T2 mapping. To this end, quantitative T2 maps of histologically intact cartilage samples (n=8) were generated using a clinical 3.0-T MR imaging system. Using displacement-controlled quasi-static indentation loading, serial T2 mapping was performed at three defined strain levels and loading-induced relative changes were determined in distinct regions-of-interest. Samples underwent conventional biomechanical testing (by unconfined compression) as well as histological assessment (by Mankin scoring) for reference purposes. Moreover, an anisotropic hyperelastic constitutive model of cartilage was implemented into a finite element (FE) code for cross-referencing. In efforts to simulate the evolution of compositional and structural intra-tissue changes under quasi-static loading, the indentation-induced changes in quantitative T2 maps were referenced to underlying changes in cartilage composition and structure. These changes were parameterized as cartilage fluid, proteoglycan and collagen content as well as collagen orientation. On a pixel-wise basis, each individual component correlation with T2 relaxation times was determined by Spearman's ρs and significant correlations were found between T2 relaxation times and all four tissue parameters for all indentation strain levels. Thus, the biological changes in functional MR Imaging parameters such as T2 can further be characterized to strengthen the scientific basis of functional MRI techniques with regards to their perspective clinical applications.
Collapse
Affiliation(s)
- Kevin Linka
- Department of Continuum Mechanics, RWTH Aachen University, Kackertstr. 9, 52072 Aachen, Germany.
| | - Mikhail Itskov
- Department of Continuum Mechanics, RWTH Aachen University, Kackertstr. 9, 52072 Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Johannes Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
19
|
Nguyen QT, Jacobsen TD, Chahine NO. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater Sci Eng 2017; 3:2644-2656. [PMID: 29152560 PMCID: PMC5686563 DOI: 10.1021/acsbiomaterials.6b00671] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
![]()
Cells
within cartilaginous tissues are mechanosensitive and thus
require mechanical loading for regulation of tissue homeostasis and
metabolism. Mechanical loading plays critical roles in cell differentiation,
proliferation, biosynthesis, and homeostasis. Inflammation is an important
event occurring during multiple processes, such as aging, injury,
and disease. Inflammation has significant effects on biological processes
as well as mechanical function of cells and tissues. These effects
are highly dependent on cell/tissue type, timing, and magnitude. In
this review, we summarize key findings pertaining to effects of inflammation
on multiscale mechanical properties at subcellular, cellular, and
tissue level in cartilaginous tissues, including alterations in mechanotransduction
and mechanosensitivity. The emphasis is on articular cartilage and
the intervertebral disc, which are impacted by inflammatory insults
during degenerative conditions such as osteoarthritis, joint pain,
and back pain. To recapitulate the pro-inflammatory cascades that
occur in vivo, different inflammatory stimuli have been used for in
vitro and in situ studies, including tumor necrosis factor (TNF),
various interleukins (IL), and lipopolysaccharide (LPS). Therefore,
this review will focus on the effects of these stimuli because they
are the best studied pro-inflammatory cytokines in cartilaginous tissues.
Understanding the current state of the field of inflammation and cell/tissue
biomechanics may potentially identify future directions for novel
and translational therapeutics with multiscale biomechanical considerations.
Collapse
Affiliation(s)
- Q T Nguyen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States
| | - T D Jacobsen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - N O Chahine
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
20
|
Early in situ changes in chondrocyte biomechanical responses due to a partial meniscectomy in the lateral compartment of the mature rabbit knee joint. J Biomech 2016; 49:4057-4064. [PMID: 27825604 DOI: 10.1016/j.jbiomech.2016.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022]
Abstract
We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology.
Collapse
|
21
|
Klets O, Mononen ME, Tanska P, Nieminen MT, Korhonen RK, Saarakkala S. Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI). J Biomech 2016; 49:3891-3900. [PMID: 27825602 DOI: 10.1016/j.jbiomech.2016.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
The intricate properties of articular cartilage and the complexity of the loading environment are some of the key challenges in developing models for biomechanical analysis of the knee joint. Fibril-reinforced poroelastic (FRPE) material models have been reported to accurately capture characteristic responses of cartilage during dynamic and static loadings. However, high computational and time costs associated with such advanced models limit applicability of FRPE models when multiple subjects need to be analyzed. If choosing simpler material models, it is important to show that they can still produce truthful predictions. Therefore, the aim of this study was to compare depth-dependent maximum principal stresses and strains within articular cartilage in the 3D knee joint between FRPE material models and simpler isotropic elastic (IE), isotropic poroelastic (IPE) and transversely isotropic poroelastic (TIPE) material models during simulated gait cycle. When cartilage-cartilage contact pressures were matched between the models (15% allowed difference), maximum principal stresses in the IE, IPE and TIPE models were substantially lower than those in the FRPE model (by more than 50%, TIPE model being closest to the FRPE model), and stresses occurred only in compression in the IE model. Additional simulations were performed to find material parameters for the TIPE model (due to its anisotropic nature) that would yield maximum principal stresses similar to the FRPE model. The modified homogeneous TIPE model was in a better agreement with the homogeneous FRPE model, and the average and maximum differences in maximum principal stresses throughout the depth of cartilage were 7% and 9%, respectively, in the lateral compartment and 9% and 11% in the medial compartment. This study revealed that it is possible to match simultaneously maximum principal stresses and strains of cartilage between non-fibril-reinforced and fibril-reinforced knee joint models during gait. Depending on the research question (such as analysis of fibril strain necessitates the use of fibril-reinforced material models) or clinical demand (fast simulations with simpler material models), the choice of the material model should be done carefully.
Collapse
Affiliation(s)
- Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland
| |
Collapse
|
22
|
Ronkainen A, Fick J, Herzog W, Korhonen R. Site-specific cell-tissue interactions in rabbit knee joint articular cartilage. J Biomech 2016; 49:2882-2890. [DOI: 10.1016/j.jbiomech.2016.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/03/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
23
|
Guo H, Torzilli PA. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression. Acta Biomater 2016; 29:170-179. [PMID: 26525115 DOI: 10.1016/j.actbio.2015.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Metabolic activity of the chondrocytes in articular cartilage is strongly related to their zone-specific shape and the composition and mechanical properties of their surrounding extracellular matrix (ECM). However the mechanisms by which cell shape influences the response of the ECM microenvironment to mechanical loading is yet to be elucidated. This relationship was studied using a biphasic multiscale finite element model of different shaped chondrocytes in the superficial and deep zones of the ECM during unconfined stress relaxation. For chondrocytes in the superficial zone, increasing the cell's initial aspect ratio (length/height) increased the deformation and solid stresses of the chondrocyte and pericellular matrix (PCM) during the loading phase; for chondrocytes in the deep zone the effect of the cell shape on the solid microenvironment was time and variable dependent. However, for superficial and deep zone chondrocytes the cell shape did not affect the fluid pressure and fluid shear stress. These results suggest that mechanotransduction of chondrocytes in articular cartilage may be regulated through the solid phase rather than the fluid phase, and that high stresses and deformations in the solid microenvironment in the superficial zone may be essential for the zone-specific biosynthetic activity of the chondrocyte. The biphasic multiscale computational analysis suggests that maintaining the cell shape is critical for regulating the microenvironment and metabolic activity of the chondrocyte in tissue engineering constructs. STATEMENT OF SIGNIFICANCE We investigated the effect of chondrocyte shape on the cellular microenvironment using a biphasic multiscale finite element analysis. Our study showed that cell shapes affects the solid but not the fluid microenvironment of the chondrocyte, and that maintaining the cell shape is critical for regulating the microenvironment and metabolic activity of the chondrocyte in native cartilage and tissue engineering constructs. As far as we know, this is the first study on the mechanotransduction mechanisms by which cell shape influences the response of the microenvironment to mechanical loading. This study is important for understanding cell mechanobiology, not only for regulation of cell phenotype in tissue engineered constructs but, as important, for understanding changes in normal chondrocyte function after post-traumatic injury and in the initiation and progression of osteoarthritis.
Collapse
|
24
|
Fick JM, Ronkainen A, Herzog W, Korhonen RK. Site-dependent biomechanical responses of chondrocytes in the rabbit knee joint. J Biomech 2015; 48:4010-4019. [PMID: 26601568 DOI: 10.1016/j.jbiomech.2015.09.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/09/2015] [Accepted: 09/26/2015] [Indexed: 11/15/2022]
Abstract
Biomechanical responses of chondrocytes were determined in specific locations within the superficial zone of patellar, femoral groove, femoral condyle and tibial plateau cartilages obtained from female New Zealand White rabbits. A confocal laser scanning microscope combined with a custom indentation system was utilized for experimentation. Changes in cell volumes and dimensions (i.e. cell height, width and depth) due to loading, global, local axial and transverse strains were determined for each site. Tissue composition and structure was analysed at each indentation site with digital densitometry, polarized light microscopy and Fourier transform infrared imaging spectroscopy. Patellar cells underwent greater volume decreases (compared to femoral groove cells; p<0.05) primarily due to greater decreases in cell height (p<0.05), consistent with greater levels of both global and local axial strains (p<0.05). Lateral condyle cells underwent greater volume decreases (compared to lateral plateau cells; p<0.05) primarily due to greater decreases in cell height, consistent with greater levels of tissue strains (p<0.05). Medial condyle cells underwent smaller volume decreases (compared to medial plateau cells; p<0.05) primarily due to elevated cell expansions in the depth direction, which was consistent with greater levels of minor transverse strains (p<0.05). Site-dependent differences in collagen orientation angles agreed conceptually with the observed cell dimensional changes. Chondrocyte biomechanical responses were highly site-dependent and corresponded primarily with the orientation of the collagen fibrils. The observed differences were thought to be due to the different biomechanical loading conditions at each site.
Collapse
Affiliation(s)
- J M Fick
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio FI-70211, Finland.
| | - A Ronkainen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio FI-70211, Finland
| | - W Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio FI-70211, Finland
| |
Collapse
|
25
|
Tanska P, Mononen ME, Korhonen RK. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. J Biomech 2015; 48:1397-406. [PMID: 25795269 DOI: 10.1016/j.jbiomech.2015.02.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Mechanical signals experienced by chondrocytes (articular cartilage cells) modulate cell synthesis and cartilage health. Multi-scale modeling can be used to study how forces are transferred from joint surfaces through tissues to chondrocytes. Therefore, estimation of chondrocyte behavior during certain physical activities, such as walking, could provide information about how cells respond to normal and abnormal loading in joints. In this study, a 3D multi-scale model was developed for evaluating chondrocyte and surrounding peri- and extracellular matrix responses during gait loading within healthy and medial meniscectomy knee joints. The knee joint geometry was based on MRI, whereas the input used for gait loading was obtained from the literature. Femoral and tibial cartilages were modeled as fibril-reinforced poroviscoelastic materials, whereas menisci were considered as transversely isotropic. Fluid pressures in the chondrocyte and cartilage tissue increased up to 2MPa (an increase of 30%) in the meniscectomy joint compared to the normal, healthy joint. The elevated level of fluid pressure was observed during the entire stance phase of gait. A medial meniscectomy caused substantially larger (up to 60%) changes in maximum principal strains in the chondrocyte compared to those in the peri- or extracellular matrices. Chondrocyte volume or morphology did not change substantially due to a medial meniscectomy. Current findings suggest that during walking chondrocyte deformations are not substantially altered due to a medial meniscectomy, while abnormal joint loading exposes chondrocytes to elevated levels of fluid pressure and maximum principal strains (compared to strains in the peri- or extracellular matrices). These might contribute to cell viability and the onset of osteoarthritis.
Collapse
Affiliation(s)
- Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
26
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
27
|
Khoshgoftar M, Ito K, van Donkelaar CC. The Influence of Cell-Matrix Attachment and Matrix Development on the Micromechanical Environment of the Chondrocyte in Tissue-Engineered Cartilage. Tissue Eng Part A 2014; 20:3112-21. [DOI: 10.1089/ten.tea.2013.0676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
28
|
Promoting increased mechanical properties of tissue engineered neocartilage via the application of hyperosmolarity and 4α-phorbol 12,13-didecanoate (4αPDD). J Biomech 2014; 47:3712-8. [PMID: 25442009 DOI: 10.1016/j.jbiomech.2014.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/14/2014] [Accepted: 09/17/2014] [Indexed: 11/20/2022]
Abstract
Osteoarthritis, a degenerative disease of the load-bearing joints, greatly reduces quality of life for millions of Americans and places a tremendous cost on the American healthcare system. Due to limitations of current treatments, tissue engineering of articular cartilage may provide a promising therapeutic option to treat cartilage defects. However, cartilage tissue engineering has yet to recapitulate the functional properties of native tissue. During normal joint loading, cartilage tissue experiences variations in osmolarity and subsequent changes in ionic concentrations. Motivated by these known variations in the cellular microenvironment, this study sought to improve the mechanical properties of neocartilage constructs via the application of hyperosmolarity and transient receptor potential vanilloid 4 (TRPV4) channel activator 4α-phorbol 12,13-didecanoate (4αPDD). It was shown that 4αPDD elicited significant increases in compressive properties. Importantly, when combined, 4αPDD positively interacted with hyperosmolarity to modulate its effects on tensile stiffness and collagen content. Thus, this study supports 4αPDD-activated channel TRPV4 as a purported mechanosensor and osmosensor that can facilitate the cell and tissue level responses to improve the mechanical properties of engineered cartilage. To our knowledge, this study is the first to systematically evaluate the roles of hyperosmolarity and 4αPDD on the functional (i.e., mechanical and biochemical) properties of self-assembled neotissue. Future work may combine 4αPDD-induced channel activation with other chemical and mechanical stimuli to create robust neocartilages suitable for treatment of articular cartilage defects.
Collapse
|
29
|
Fick JM, Huttu MRJ, Lammi MJ, Korhonen RK. In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner. Osteoarthritis Cartilage 2014; 22:1410-8. [PMID: 25278052 DOI: 10.1016/j.joca.2014.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if increasing cartilage cross-links through in vitro glycation of cartilage explants can alter the biomechanical response of chondrocytes to compressive deformation. METHOD Bovine osteochondral explants were either incubated with cell culture solution supplemented with (n = 7) or without (n = 7) ribose for 42 h in order to induce glycation. Deformation-induced changes in cell volume, dimensions and local tissue strains were determined through confocal laser scanning microscopy (CLSM) and the use of a custom built micro-compression device. Osteochondral explants were also utilized to demonstrate changes in depth-wise tissue properties, biomechanical tissue properties and cross-links such as pentosidine (Pent), hydroxylysyl pyridinoline (HP) and lysyl pyridinoline (LP). RESULTS The ribose treated osteochondral samples experienced reduced cell volume deformation in the upper tissue zone by ∼ 8% (P = 0.005), as compared the control samples, through restricting cell expansion. In the deeper tissue zone, cell volume deformation was increased by ∼ 12% (P < 0.001) via the transmission of mechanical signals further into the tissue depth. Biomechanical testing of the ribose treated osteochondral samples demonstrated an increase in the equilibrium and dynamic strain dependent moduli (P < 0.001 and P = 0.008, respectively). The biochemical analysis revealed an increase in Pent cross-links (P < 0.001). Depth-wise tissue property analyses revealed increased levels of carbohydrate content, greater levels of fixed charge density and an increased carbohydrate to protein ratio from 6 to 16%, 55-100% and 72-79% of the normalized tissue thickness (from the surface), respectively, in the ribose-treated group (P < 0.05). CONCLUSION In vitro glycation alters the biomechanical response of chondrocytes in cartilage differently in upper and deeper zones, offering possible insights into how aging could alter cell deformation behavior in cartilage.
Collapse
Affiliation(s)
- J M Fick
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - M R J Huttu
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - M J Lammi
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
30
|
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014; 39:25-32. [PMID: 25172825 DOI: 10.1016/j.matbio.2014.08.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM) that is both biochemically and biomechanically distinct from the extracellular matrix (ECM) of the tissue. While the PCM was first observed nearly a century ago, its role is still under investigation. In support of early hypotheses regarding its function, increasing evidence indicates that the PCM serves as a transducer of biochemical and biomechanical signals to the chondrocyte. Work over the past two decades has established that the PCM in adult tissue is defined biochemically by several molecular components, including type VI collagen and perlecan. On the other hand, the biomechanical properties of this structure have only recently been measured. Techniques such as micropipette aspiration, in situ imaging, computational modeling, and atomic force microscopy have determined that the PCM exhibits distinct mechanical properties as compared to the ECM, and that these properties are influenced by specific PCM components as well as disease state. Importantly, the unique relationships among the mechanical properties of the chondrocyte, PCM, and ECM in different zones of cartilage suggest that this region significantly influences the stress-strain environment of the chondrocyte. In this review, we discuss recent advances in the measurement of PCM mechanical properties and structure that further increase our understanding of PCM function. Taken together, these studies suggest that the PCM plays a critical role in controlling the mechanical environment and mechanobiology of cells in cartilage and other cartilaginous tissues, such as the meniscus or intervertebral disc.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Johannah Sanchez-Adams
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
31
|
Huttu MRJ, Puhakka J, Mäkelä JTA, Takakubo Y, Tiitu V, Saarakkala S, Konttinen YT, Kiviranta I, Korhonen RK. Cell-tissue interactions in osteoarthritic human hip joint articular cartilage. Connect Tissue Res 2014; 55:282-91. [PMID: 24702070 DOI: 10.3109/03008207.2014.912645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Volume and morphology of chondrocytes in osteoarthritic human hip joint articular cartilage were characterized, and their relationship to tissue structure and function was determined. Human osteochondral articular cartilage samples (n=16) were obtained from the femoral heads of nine patients undergoing total hip arthroplasty due to osteoarthritis (OA). Superficial chondrocytes (N=65) were imaged in situ with a confocal laser scanning microscope at 37 °C. This was followed by the determination of the mechanical properties of the tissue samples, depth-wise characterization of cell morphology (height, width; N=385) as well as structure and composition of the tissues using light microscopy, digital densitometry, Fourier transform infrared microspectroscopy and polarized light microscopy. Significant correlations were found between the cell volume and the orientation angle associated with the collagen fibers (r=0.320, p=0.009) as well as between the cell volume and the initial dynamic modulus of the tissue (r=-0.305, p=0.013). Furthermore, the depth-dependent chondrocyte aspect ratio (height/width) correlated significantly with the orientation angle of the collagen fibers and with the tissue's proteoglycan content (r=0.261 and r=0.228, respectively, p<0.001). Our findings suggest that the orientation angle of the collagen fibers primarily controls chondrocyte volume and shape in osteoarthritic human hip joint articular cartilage.
Collapse
Affiliation(s)
- Mari R J Huttu
- Department of Applied Physics, University of Eastern Finland , Kuopio , Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guo H, Maher SA, Torzilli PA. A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression. J Biomech 2014; 47:2721-9. [PMID: 24882738 DOI: 10.1016/j.jbiomech.2014.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/01/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
Computational analyses have been used to study the biomechanical microenvironment of the chondrocyte that cannot be assessed by in vitro experimental studies; yet all computational studies thus far have focused on the effect of zonal location (superficial, middle, and deep) on the mechanical microenvironment of chondrocytes. The aim of this paper was to study the effect of both zonal and radial locations on the biomechanical microenvironment of chondrocytes in inhomogeneous cartilage under unconfined stress relaxation. A biphasic multiscale approach was employed and nine chondrocytes in different locations were studied. Hyperelastic biphasic theory and depth-dependent aggregate modulus and permeability of articular cartilage were included in the models. It was found that both zonal and radial locations affected the biomechanical stresses and strains of the chondrocytes. Chondrocytes in the mid-radial location had increased volume during the early stage of the loading process. Maximum principal shear stress at the interface between the chondrocyte and the extracellular matrix (ECM) increased with depth, yet that at the ECM-pericellular matrix (PCM) interface had an inverse trend. Fluid pressure decreased with depth, while the fluid pressure difference between the top and bottom boundaries of the microscale model increased with depth. Regardless of location, fluid was exchanged between the chondrocyte, PCM, and ECM. These findings suggested that even under simple compressive loading conditions, the biomechanical microenvironment of the chondrocytes, PCM and ECM was spatially dependent. The current study provides new insight on chondrocyte biomechanics.
Collapse
Affiliation(s)
- Hongqiang Guo
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | - Suzanne A Maher
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Peter A Torzilli
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|
33
|
Gao LL, Zhang CQ, Yang YB, Shi JP, Jia YW. Depth-dependent strain fields of articular cartilage under rolling load by the optimized digital image correlation technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2317-22. [DOI: 10.1016/j.msec.2013.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
|
34
|
A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:326150. [PMID: 23653665 PMCID: PMC3638701 DOI: 10.1155/2013/326150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/11/2013] [Accepted: 02/23/2013] [Indexed: 11/17/2022]
Abstract
The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation.
Collapse
|
35
|
Superficial collagen fibril modulus and pericellular fixed charge density modulate chondrocyte volumetric behaviour in early osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:164146. [PMID: 23634175 PMCID: PMC3619633 DOI: 10.1155/2013/164146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.
Collapse
|
36
|
Turunen SM, Han SK, Herzog W, Korhonen RK. Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthritis Cartilage 2013; 21:505-13. [PMID: 23247212 DOI: 10.1016/j.joca.2012.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocyte stresses and strains in articular cartilage are known to modulate tissue mechanobiology. Cell deformation behavior in cartilage under mechanical loading is not known at the earliest stages of osteoarthritis. Thus, the aim of this study was to investigate the effect of mechanical loading on volume and morphology of chondrocytes in the superficial tissue of osteoarthritic cartilage obtained from anterior cruciate ligament transected (ACLT) rabbit knee joints, 4 weeks after intervention. METHODS A unique custom-made microscopy indentation system with dual-photon microscope was used to apply controlled 2 MPa force-relaxation loading on patellar cartilage surfaces. Volume and morphology of chondrocytes were analyzed before and after loading. Also global and local tissue strains were calculated. Collagen content, collagen orientation and proteoglycan content were quantified with Fourier transform infrared microspectroscopy, polarized light microscopy and digital densitometry, respectively. RESULTS Following the mechanical loading, the volume of chondrocytes in the superficial tissue increased significantly in ACLT cartilage by 24% (95% confidence interval (CI) 17.2-31.5, P < 0.001), while it reduced significantly in contralateral group tissue by -5.3% (95% CI -8.1 to -2.5, P = 0.003). Collagen content in ACLT and contralateral cartilage were similar. PG content was reduced and collagen orientation angle was increased in the superficial tissue of ACLT cartilage compared to the contralateral cartilage. CONCLUSIONS We found the novel result that chondrocyte deformation behavior in the superficial tissue of rabbit articular cartilage is altered already at 4 weeks after ACLT, likely because of changes in collagen fibril orientation and a reduction in PG content.
Collapse
Affiliation(s)
- S M Turunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
37
|
Mohammadi H, Mequanint K, Herzog W. Computational aspects in mechanical modeling of the articular cartilage tissue. Proc Inst Mech Eng H 2013; 227:402-20. [DOI: 10.1177/0954411912470239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.
Collapse
Affiliation(s)
- Hadi Mohammadi
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, the University of Western Ontario, London, Ontario, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Zhang CQ, Gao LL, Dong LM, Liu HY. Depth-dependent normal strain of articular cartilage under sliding load by the optimized digital image correlation technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Madden R, Han SK, Herzog W. Chondrocyte deformation under extreme tissue strain in two regions of the rabbit knee joint. J Biomech 2012; 46:554-60. [PMID: 23089458 DOI: 10.1016/j.jbiomech.2012.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/15/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022]
Abstract
Articular cartilage and its native cells-chondrocytes-are exposed to a wide range of mechanical loading. Chondrocytes are responsible for maintaining the cartilage matrix, yet relatively little is known regarding their behavior under a complete range of mechanical loads or how cell mechanics are affected by region within the joint. The purpose of this study was to investigate chondrocyte deformations in situ under tissue loads ranging from physiological to extreme (0-80% nominal strain) in two regions of the rabbit knee joint (femoral condyles and patellae). Local matrix strains and cell compressive strains increased with increasing loads. At low loads the extracellular matrix (ECM) strains in the superficial zone were greater than the applied tissue strains, while at extreme loads, the local ECM strains were smaller than the applied strains. Cell compressive strains were always smaller than the applied tissue strains and, in our intact, in situ preparation, were substantially smaller than those previously found in hemi-cylindrical explants. This resulted in markedly different steady-state cell volume changes in the current study compared to those working with cartilage explants. Additionally, cells from different regions in the knee exhibited striking differences in deformation behavior under load. The current results suggest: (i) that the local extracellular and pericellular matrix environment is intimately linked to chondrocyte mechanobiology, protecting chondrocytes from potentially damaging strains at high tissue loads; and (ii) that cell mechanics are a function of applied load and local cartilage tissue structure.
Collapse
Affiliation(s)
- Ryan Madden
- Department of Biomedical Engineering, University of Calgary, Canada.
| | | | | |
Collapse
|
40
|
Wilusz RE, DeFrate LE, Guilak F. Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage. J R Soc Interface 2012; 9:2997-3007. [PMID: 22675162 DOI: 10.1098/rsif.2012.0314] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pericellular matrix (PCM) is a narrow region that is rich in type VI collagen that surrounds each chondrocyte within the extracellular matrix (ECM) of articular cartilage. Previous studies have demonstrated that the chondrocyte micromechanical environment depends on the relative properties of the chondrocyte, its PCM and the ECM. The objective of this study was to measure the influence of type VI collagen on site-specific micromechanical properties of cartilage in situ by combining atomic force microscopy stiffness mapping with immunofluorescence imaging of PCM and ECM regions in cryo-sectioned tissue samples. This method was used to test the hypotheses that PCM biomechanical properties correlate with the presence of type VI collagen and are uniform with depth from the articular surface. Control experiments verified that immunolabelling did not affect the properties of the ECM or PCM. PCM biomechanical properties correlated with the presence of type VI collagen, and matrix regions lacking type VI collagen immediately adjacent to the PCM exhibited higher elastic moduli than regions positive for type VI collagen. PCM elastic moduli were similar in all three zones. Our findings provide further support for type VI collagen in defining the chondrocyte PCM and contributing to its biological and biomechanical properties.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Box 3093, Durham, NC 27710, USA
| | | | | |
Collapse
|
41
|
Halloran JP, Sibole S, van Donkelaar CC, van Turnhout MC, Oomens CWJ, Weiss JA, Guilak F, Erdemir A. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann Biomed Eng 2012; 40:2456-74. [PMID: 22648577 DOI: 10.1007/s10439-012-0598-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/16/2012] [Indexed: 11/27/2022]
Abstract
Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes.
Collapse
Affiliation(s)
- J P Halloran
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wilusz RE, Defrate LE, Guilak F. A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol 2012; 31:320-7. [PMID: 22659389 DOI: 10.1016/j.matbio.2012.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 12/01/2022]
Abstract
Chondrocytes are surrounded by a narrow pericellular matrix (PCM) that is biochemically, structurally, and biomechanically distinct from the bulk extracellular matrix (ECM) of articular cartilage. While the PCM is often defined by the presence of type VI collagen, other macromolecules such as perlecan, a heparan sulfate (HS) proteoglycan, are also exclusively localized to the PCM in normal cartilage and likely contribute to PCM structural integrity and biomechanical properties. Though perlecan is essential for normal cartilage development, its exact role in the PCM is unknown. The objective of this study was to determine the biomechanical role of perlecan in the articular cartilage PCM in situ and its potential as a defining factor of the PCM. To this end, atomic force microscopy (AFM) stiffness mapping was combined with dual immunofluorescence labeling of cryosectioned porcine cartilage samples for type VI collagen and perlecan. While there was no difference in overall PCM mechanical properties between type VI collagen- and perlecan-based definitions of the PCM, within the PCM, interior regions containing both type VI collagen and perlecan exhibited lower elastic moduli than more peripheral regions rich in type VI collagen alone. Enzymatic removal of HS chains from perlecan with heparinase III increased PCM elastic moduli both overall and locally in interior regions rich in both perlecan and type VI collagen. Heparinase III digestion had no effect on ECM elastic moduli. Our findings provide new evidence for perlecan as a defining factor in both the biochemical and biomechanical properties of the PCM.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, United States
| | | | | |
Collapse
|
43
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé WK. Targeted In Situ Biosynthetic Transcriptional Activation in Native Surface-Level Human Articular Chondrocytes during Lesion Stabilization. Cartilage 2012; 3:141-55. [PMID: 26069627 PMCID: PMC4297128 DOI: 10.1177/1947603511426881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Safe articular cartilage lesion stabilization is an important early surgical intervention advance toward mitigating articular cartilage disease burden. While short-term chondrocyte viability and chondrosupportive matrix modification have been demonstrated within tissue contiguous to targeted removal of damaged articular cartilage, longer term tissue responses require evaluation to further clarify treatment efficacy. The purpose of this study was to examine surface chondrocyte responses within contiguous tissue after lesion stabilization. METHODS Nonablation radiofrequency lesion stabilization of human cartilage explants obtained during knee replacement was performed for surface fibrillation. Time-dependent chondrocyte viability, nuclear morphology and cell distribution, and temporal response kinetics of matrix and chaperone gene transcription indicative of differentiated chondrocyte function were evaluated in samples at intervals to 96 hours after treatment. RESULTS Subadjacent surface articular cartilage chondrocytes demonstrated continued viability for 96 hours after treatment, a lack of increased nuclear fragmentation or condensation, persistent nucleic acid production during incubation reflecting cellular assembly behavior, and transcriptional up-regulation of matrix and chaperone genes indicative of retained biosynthetic differentiated cell function. CONCLUSIONS The results of this study provide further evidence of treatment efficacy and suggest the possibility to manipulate or induce cellular function, thereby recruiting local chondrocytes to aid lesion recovery. Early surgical intervention may be viewed as a tissue rescue, allowing articular cartilage to continue displaying biological responses appropriate to its function rather than converting to a tissue ultimately governed by the degenerative material property responses of matrix failure. Early intervention may positively impact the late changes and reduce disease burden of damaged articular cartilage.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Augé
- NuOrtho Surgical Inc., Fall River, MA, USA,Center for Orthopaedic and Sports Performance Research Inc., Santa Fe, NM, USA
| |
Collapse
|
44
|
Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 2011; 347:613-27. [PMID: 22030892 PMCID: PMC3306561 DOI: 10.1007/s00441-011-1243-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/09/2011] [Indexed: 01/02/2023]
Abstract
Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality.
Collapse
|
45
|
Han SK, Federico S, Herzog W. A depth-dependent model of the pericellular microenvironment of chondrocytes in articular cartilage. Comput Methods Biomech Biomed Engin 2011; 14:657-64. [PMID: 20665295 DOI: 10.1080/10255842.2010.493512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Experimental studies suggest that the magnitude of chondrocyte deformation is much smaller than expected based on the material properties of extracellular matrix (ECM) and cells, and that this result could be explained by a structural unit, the chondron, that is thought to protect chondrocytes from large deformations in situ. We extended an existing numerical model of chondrocyte, ECM and pericellular matrix (PCM) to include depth-dependent structural information. Our results suggest that superficial zone chondrocytes, which lack a pericellular capsule (PC), are relatively stiff, and therefore are protected from excessive deformations, whereas middle and deep zone chondrocytes are softer but are protected by the PC that limits cell deformations in these regions. We conclude that cell deformations sensitively depend on the immediate structural environment of the PCM in a depth-dependent manner, and that the functional stiffness of chondrocytes in situ is much larger than experiments on isolated cells would suggest.
Collapse
Affiliation(s)
- Sang-Kuy Han
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
46
|
Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explant. Biomech Model Mechanobiol 2011; 11:665-75. [DOI: 10.1007/s10237-011-0341-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
|
47
|
Korhonen RK, Julkunen P, Jurvelin JS, Saarakkala S. Structural and Compositional Changes in Peri- and Extracellular Matrix of Osteoarthritic Cartilage Modulate Chondrocyte Morphology. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0178-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Darling EM, Wilusz RE, Bolognesi MP, Zauscher S, Guilak F. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys J 2010; 98:2848-56. [PMID: 20550897 DOI: 10.1016/j.bpj.2010.03.037] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/15/2010] [Accepted: 03/17/2010] [Indexed: 11/15/2022] Open
Abstract
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of approximately 0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.
Collapse
Affiliation(s)
- Eric M Darling
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
49
|
Kim E, Guilak F, Haider MA. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. J Biomech Eng 2010; 132:031011. [PMID: 20459199 DOI: 10.1115/1.4000938] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pericellular matrix (PCM) is the narrow tissue region surrounding all chondrocytes in articular cartilage and, together, the chondrocyte(s) and surrounding PCM have been termed the chondron. Previous theoretical and experimental studies suggest that the structure and properties of the PCM significantly influence the biomechanical environment at the microscopic scale of the chondrocytes within cartilage. In the present study, an axisymmetric boundary element method (BEM) was developed for linear elastic domains with internal interfaces. The new BEM was employed in a multiscale continuum model to determine linear elastic properties of the PCM in situ, via inverse analysis of previously reported experimental data for the three-dimensional morphological changes of chondrons within a cartilage explant in equilibrium unconfined compression (Choi, et al., 2007, "Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage," J. Biomech., 40, pp. 2596-2603). The microscale geometry of the chondron (cell and PCM) within the cartilage extracellular matrix (ECM) was represented as a three-zone equilibrated biphasic region comprised of an ellipsoidal chondrocyte with encapsulating PCM that was embedded within a spherical ECM subjected to boundary conditions for unconfined compression at its outer boundary. Accuracy of the three-zone BEM model was evaluated and compared with analytical finite element solutions. The model was then integrated with a nonlinear optimization technique (Nelder-Mead) to determine PCM elastic properties within the cartilage explant by solving an inverse problem associated with the in situ experimental data for chondron deformation. Depending on the assumed material properties of the ECM and the choice of cost function in the optimization, estimates of the PCM Young's modulus ranged from approximately 24 kPa to 59 kPa, consistent with previous measurements of PCM properties on extracted chondrons using micropipette aspiration. Taken together with previous experimental and theoretical studies of cell-matrix interactions in cartilage, these findings suggest an important role for the PCM in modulating the mechanical environment of the chondrocyte.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
50
|
Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage. Biomech Model Mechanobiol 2010; 10:269-79. [PMID: 20526790 DOI: 10.1007/s10237-010-0233-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth-dependent arcade-like structure in adult animals. Current understanding on the mechanobiology of postnatal AC development is incomplete. In the current paper, we investigate the contribution of collagen fibril orientation changes to the depth-dependent mechanical properties of AC. We use a composition-based finite element model to simulate in a 1-D confined compression geometry the effects of ten different collagen orientation patterns that were measured in developing sheep. In initial postnatal life, AC is mostly subject to growth and we observe only small changes in depth-dependent mechanical behaviour. Functional adaptation of depth-dependent mechanical behaviour of AC takes place in the second half of life before puberty. Changes in fibril orientation alone increase cartilage stiffness during development through the modulation of swelling strains and osmotic pressures. Changes in stiffness are most pronounced for small stresses and for cartilage adjacent to the bone. We hypothesize that postnatal changes in collagen fibril orientation induce mechanical effects that in turn promote these changes. We further hypothesize that a part of the depth-dependent postnatal increase in collagen content in literature is initiated by the depth-dependent postnatal increase in fibril strain due to collagen fibril reorientation.
Collapse
|