1
|
Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater 2023; 156:110-124. [PMID: 35429670 DOI: 10.1016/j.actbio.2022.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023]
Abstract
3D printed bone scaffolds have the potential to replace autografts and allografts because of advantages such as unlimited supply and the ability to tailor the scaffolds' biochemical, biological and biophysical properties. Significant progress has been made over the past decade in additive manufacturing techniques to 3D print bone grafts, but challenges remain in the lack of manufacturing techniques that can recapitulate both mechanical and biological functions of native bones. The purpose of this review is to outline the recent progress and challenges of engineering an ideal synthetic bone scaffold and to provide suggestions for overcoming these challenges through bioinspiration, high-resolution 3D printing, and advanced modeling techniques. The article provides a short overview of the progress in developing the 3D printed scaffolds for the repair and regeneration of critical size bone defects. STATEMENT OF SIGNIFICANCE: Treatment of critical size bone defects is still a tremendous clinical challenge. To address this challenge, diverse sets of advanced manufacturing approaches and materials have been developed for bone tissue scaffolds. 3D printing has sparked much interest because it provides a close control over the scaffold's internal architecture and in turn its mechanical and biological properties. This article provides a critical overview of the relationships between material compositions, printing techniques, and properties of the scaffolds and discusses the current technical challenges facing their successful translation to the clinic. Bioinspiration, high-resolution printing, and advanced modeling techniques are discussed as future directions to address the current challenges.
Collapse
Affiliation(s)
- Mohammad Mirkhalaf
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD 4000 Australia.
| | - Yinghui Men
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Rui Wang
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Young No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Farzin A, Hassan S, Teixeira LSM, Gurian M, Crispim JF, Manhas V, Carlier A, Bae H, Geris L, Noshadi I, Shin SR, Leijten J. Self-Oxygenation of Tissues Orchestrates Full-Thickness Vascularization of Living Implants. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2100850. [PMID: 34924912 PMCID: PMC8680410 DOI: 10.1002/adfm.202100850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 05/13/2023]
Abstract
Bioengineering of tissues and organs has the potential to generate functional replacement organs. However, achieving the full-thickness vascularization that is required for long-term survival of living implants has remained a grand challenge, especially for clinically sized implants. During the pre-vascular phase, implanted engineered tissues are forced to metabolically rely on the diffusion of nutrients from adjacent host-tissue, which for larger living implants results in anoxia, cell death, and ultimately implant failure. Here it is reported that this challenge can be addressed by engineering self-oxygenating tissues, which is achieved via the incorporation of hydrophobic oxygen-generating micromaterials into engineered tissues. Self-oxygenation of tissues transforms anoxic stresses into hypoxic stimulation in a homogenous and tissue size-independent manner. The in situ elevation of oxygen tension enables the sustained production of high quantities of angiogenic factors by implanted cells, which are offered a metabolically protected pro-angiogenic microenvironment. Numerical simulations predict that self-oxygenation of living tissues will effectively orchestrate rapid full-thickness vascularization of implanted tissues, which is empirically confirmed via in vivo experimentation. Self-oxygenation of tissues thus represents a novel, effective, and widely applicable strategy to enable the vascularization living implants, which is expected to advance organ transplantation and regenerative medicine applications.
Collapse
Affiliation(s)
- Ali Farzin
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| | - Liliana S Moreira Teixeira
- Department of Developmental BioEngineering Technical Medical Centre University of Twente Enschede, The Netherlands
| | - Melvin Gurian
- Department of Developmental BioEngineering Technical Medical Centre University of Twente Enschede, The Netherlands
| | - João F Crispim
- Department of Developmental BioEngineering Technical Medical CentreUniversity of Twente Enschede, The Netherlands
| | - Varun Manhas
- Biomechanics Research Unit GIGA In Silico Medicine University of Liège Chemin des Chevreuils 1, B52/3, Liège 4000, Belgium
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering MERLN Institute University of Maastricht Maastricht, The Netherlands
| | - Hojae Bae
- KU Convergence Science and Technology Institute Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul 05029, Republic of Korea
| | - Liesbet Geris
- Biomechanics Research Unit GIGA In Silico Medicine University of Liège Chemin des Chevreuils 1, B52/3, Liège 4000, Belgium
| | - Iman Noshadi
- Department of Bioengineering University of California Riverside, CA 92521, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| | - Jeroen Leijten
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Ghensi P, Bressan E, Gardin C, Ferroni L, Soldini MC, Mandelli F, Soldini C, Zavan B. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells. MATERIALS 2017; 10:ma10111321. [PMID: 29149082 PMCID: PMC5706268 DOI: 10.3390/ma10111321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 01/04/2023]
Abstract
Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment.
Collapse
Affiliation(s)
- Paolo Ghensi
- Department of Neurosciences, Dental School, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
- Centre for Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy.
| | - Eriberto Bressan
- Department of Neurosciences, Dental School, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58, 35100 Padova, Italy.
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58, 35100 Padova, Italy.
| | - Maria Costanza Soldini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | | | - Claudio Soldini
- Department of Neurosciences, Dental School, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
- CLC Scientific, via Vecchia Ferriera 18, 36100 Vicenza, Italy.
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58, 35100 Padova, Italy.
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy.
| |
Collapse
|
4
|
Alqhtani N, Logan N, Meghji S, Leeson R, Brett P. Low dose effect of bisphosphonates on hMSCs osteogenic response to titanium surface in vitro. Bone Rep 2017; 6:64-69. [PMID: 28377984 PMCID: PMC5365309 DOI: 10.1016/j.bonr.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022] Open
Abstract
Since the 1980s, titanium (Ti) implants have been routinely used to replace missing teeth. This success is mainly due to the good biocompatibility of Ti and the phenomenon of osseointegration, with very early events at implant placement being important in determining good osseointegration. However, enhancing implant performance with coatings such as hydroxyapatite (HA) and calcium phosphate has proved largely unsuccessful. Human mesenchymal stem cells (hMSCs) are the first osteogenic cells to colonise implant surfaces and offer a target for enhancing osseointegration. We previously reported that small doses of bisphosphonate (BP) may play an integral role in enhancing hMSC proliferation and osteogenic differentiation. The aim of this study is to investigate whether small doses of bisphosphonates enhance proliferation and osteogenic differentiation of hMSCs on Ti surfaces, to enhance bone osseointegration and to accelerate wound healing around the implant surface. Our data suggests that treating cells with small doses of BP (100 nM & 10 nM) induces significant hMSC stimulation of osteogenic markers including calcium, collagen type I and ALP compared to control group on titanium surfaces (P < 0.05). In addition, cell proliferation and migration were significantly enhanced on titanium surfaces (P < 0.05).
Collapse
Affiliation(s)
- N.R. Alqhtani
- University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Sattam bin Abdulaziz University, AlKharj, Saudi Arabia
- Corresponding author at: Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.Eastman Dental InstituteUniversity College London256 Gray's Inn RoadLondonWC1X 8LDUK
| | - N.J. Logan
- University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - S. Meghji
- University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - R. Leeson
- University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - P.M. Brett
- University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| |
Collapse
|
5
|
Bechtold JE, Swider P, Goreham-Voss C, Soballe K. Experimental and Numerical Models of Complex Clinical Scenarios; Strategies to Improve Relevance and Reproducibility of Joint Replacement Research. J Biomech Eng 2016; 138:021008. [PMID: 26720312 DOI: 10.1115/1.4032368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/26/2022]
Abstract
This research review aims to focus attention on the effect of specific surgical and host factors on implant fixation, and the importance of accounting for them in experimental and numerical models. These factors affect (a) eventual clinical applicability and (b) reproducibility of findings across research groups. Proper function and longevity for orthopedic joint replacement implants relies on secure fixation to the surrounding bone. Technology and surgical technique has improved over the last 50 years, and robust ingrowth and decades of implant survival is now routinely achieved for healthy patients and first-time (primary) implantation. Second-time (revision) implantation presents with bone loss with interfacial bone gaps in areas vital for secure mechanical fixation. Patients with medical comorbidities such as infection, smoking, congestive heart failure, kidney disease, and diabetes have a diminished healing response, poorer implant fixation, and greater revision risk. It is these more difficult clinical scenarios that require research to evaluate more advanced treatment approaches. Such treatments can include osteogenic or antimicrobial implant coatings, allo- or autogenous cellular or tissue-based approaches, local and systemic drug delivery, surgical approaches. Regarding implant-related approaches, most experimental and numerical models do not generally impose conditions that represent mechanical instability at the implant interface, or recalcitrant healing. Many treatments will work well in forgiving settings, but fail in complex human settings with disease, bone loss, or previous surgery. Ethical considerations mandate that we justify and limit the number of animals tested, which restricts experimental permutations of treatments. Numerical models provide flexibility to evaluate multiple parameters and combinations, but generally need to employ simplifying assumptions. The objectives of this paper are to (a) to highlight the importance of mechanical, material, and surgical features to influence implant-bone healing, using a selection of results from two decades of coordinated experimental and numerical work and (b) discuss limitations of such models and the implications for research reproducibility. Focusing model conditions toward the clinical scenario to be studied, and limiting conclusions to the conditions of a particular model can increase clinical relevance and research reproducibility.
Collapse
|
6
|
Bostancıoğlu RB, Peksen C, Genc H, Gürbüz M, Karel FB, Koparal AS, Dogan A, Kose N, Koparal AT. Analyses of the modulatory effects of antibacterial silver doped calcium phosphate-based ceramic nano-powder on proliferation, survival, and angiogenic capacity of different mammalian cells in vitro. ACTA ACUST UNITED AC 2015; 10:045024. [PMID: 26306474 DOI: 10.1088/1748-6041/10/4/045024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, the antibacterial, cytotoxic, and angiogenic activities of silver doped calcium phosphate-based inorganic powder (ABT or PAG) were systematically investigated. ABT powders containing varying silver content were fabricated using a wet chemical manufacturing method. Antibacterial efficiencies of the ABT powders were investigated using a standard test with indicator bacteria and yeast. The cytotoxic effects of ABT on three different fibroblast cells and human umbilical vein endothelial cells (HUVECs) were assessed using MTT assay. ABT powder exhibits concentration-related cytotoxicity characteristics. Apoptotic activity, attachment capability, and wound healing effects were examined on fibroblasts. The angiogenic activity of ABT was investigated by tube formation assay in HUVECs; 10 μg ml(-1) and 100 μg ml(-1) concentrations of the highest metal ion content of ABT did not disrupt the tube formation of HUVECs. All these tests showed that ABT does not compromise the survival of the cells and might impose regeneration ability to various cell types. These results indicate that silver doped calcium phosphate-based inorganic powder with an optimal silver content has good potential for developing new biomaterials for implant applications.
Collapse
|
7
|
Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices. J Biomech 2014; 47:1241-50. [DOI: 10.1016/j.jbiomech.2014.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
|
8
|
Khalil G, Mansat P, Søballe K, Bechtold JE, Swider P. A reactive model to predict the periprosthetic healing. Comput Methods Biomech Biomed Engin 2012; 15 Suppl 1:21-2. [PMID: 23009408 DOI: 10.1080/10255842.2012.713729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- G Khalil
- IMFT UMR 5502, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|