1
|
Lefranc AS, Klute GK, Neptune RR. The influence of load carriage and prosthetic foot type on individual muscle and prosthetic foot contributions to body support and propulsion. J Biomech 2024; 177:112379. [PMID: 39486380 DOI: 10.1016/j.jbiomech.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Individuals with transtibial amputation (TTA) experience altered gait mechanics, which are primarily attributed to the functional loss of the ankle plantarflexors. The plantarflexors contribute to body support and propulsion and play an important role in adapting to different load carriage conditions. However, how muscle function is altered across different prosthetic foot types and load carriage scenarios for individuals with TTA remains unclear. This study used musculoskeletal modeling and simulation of human movement in OpenSim to investigate the effects of a range of prosthetic feet and load conditions on individual muscle and prosthetic foot contributions to body support and propulsion. Twenty walking trials were collected from five individuals with TTA, consisting of five loading conditions (no-load; 30 lbs (13.6 kg) carried as a front-load, back-load, intact-side-load and residual-side-load) while wearing four prosthetic feet (their passive standard of care (SOC) foot, their SOC foot one category stiffer, their SOC foot with a heel stiffening wedge, and a dual-keel foot). Two participants also wore a powered ankle-foot prosthesis, thus completing an additional five trials each. The results indicated that the front-load condition may be more challenging because it required overall increased muscle contributions to body support and propulsion. However, the front- and residual-side-loads required reduced intact-side plantarflexor contributions to support and propulsion, and thus may be advantageous for individuals with plantarflexor weakness. Further, the large variability across contributions suggests that individuals with TTA may rely on a variety of compensatory mechanisms depending on the load condition and prosthetic foot used.
Collapse
Affiliation(s)
- Aude S Lefranc
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Glenn K Klute
- Department of Veteran Affairs, Center for Limb Loss and MoBility, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Nolasco LA, Silverman AK, Gates DH. Altering prosthetic alignment does not affect hip and low back joint loading during sit-to-stand in people with a transtibial amputation. J Biomech 2024; 176:112381. [PMID: 39454551 DOI: 10.1016/j.jbiomech.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
People with a transtibial amputation (TTA) have greater prevalence of low back and hip joint pain compared to the general population. Altered movement, loading patterns, and neuromuscular activation during daily tasks like sit-to-stand likely contribute to these high rates of pain. In addition, muscle activation, ground reaction forces, and trunk range of motion can be affected by prosthetic alignment during sit-to-stand. However, it is unclear how prosthetic alignment affects joint contact forces during this task. The purpose of this study was to investigate the effect of prosthetic alignment on hip and low-back joint loading in people with TTA during sit-to-stand. Kinematics, ground reaction forces, and muscle activity data were collected from 10 people with TTA and 10 age- and sex- matched individuals without limb loss during five self-paced sit-to-stand trials. Participants with TTA completed the sit-to-stand task with their prescribed alignment and six altered alignment conditions (±10 mm anterior/posterior, medial/lateral, and ± 20 mm short/tall). A musculoskeletal model was used to calculate hip and L4-L5 joint loading. There were no differences in hip or L4-L5 joint loading between alignments. Participants with TTA had a greater peak hip joint contact force on the intact side hip compared to the amputated side hip across all alignments. Participants with TTA had greater L4-L5 joint contact force compared to those without amputation. While prosthetic alignment did not affect joint loading during sit-to-stand, future work on additional dynamic tasks is needed to better understand the potential role of prosthetic alignment on joint loading.
Collapse
Affiliation(s)
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, USA
| | - Deanna H Gates
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Carswell TMR, Hasan M, Giles JW. A scoping review and evaluation of open-source transtibial amputation musculoskeletal models for female populations. Prosthet Orthot Int 2024:00006479-990000000-00264. [PMID: 39259587 DOI: 10.1097/pxr.0000000000000372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/14/2024] [Indexed: 09/13/2024]
Abstract
Musculoskeletal modeling is often used to study people with transtibial amputations. Females in this population are of particular interest as they are underrepresented in research, experience unique challenges, and demonstrate gait biomechanics distinct from males. Because generic models often neglect innate variations between populations, it is important to determine whether data used to develop a model are representative of the population studied. The objective of this study was to review and analyze existing transtibial amputation musculoskeletal models, establish a database from the information compiled, and use the database to select the model most relevant for studying female populations. A scoping search was performed and a database was created based on data detailing the eligible models. Models were evaluated through a weighted decision process based on criteria of their representation of females with transtibial amputations, prosthetic functionality, development transparency, overall functionality, and experimental validation methods. The scoping review identified 3 studies, Willson et al., LaPrè et al., and Miller and Esposito. A database detailing these models was established. The Willson model scored highest on all criteria except overall functionality, where the LaPrè model outscored it. Based on the established weightings, the Willson model was classed most appropriate for the stated goals. The created database can be used by other researchers to guide their own modeling studies, irrespective of the population of focus. Of the 3, the Willson model was found most relevant for studying females with transtibial amputations. This model will be used in future work investigating and addressing challenges of females with transtibial amputations.
Collapse
Affiliation(s)
- Tess M R Carswell
- Orthopaedic Technologies and Biomechanics Laboratory, Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | | | | |
Collapse
|
4
|
Vandenberg NW, Wheatley BB, Carpenter RD, Christiansen CL, Stoneback JW, Gaffney BMM. Feasibility of predicting changes in gait biomechanics following muscle strength perturbations using optimal control in patients with transfemoral amputation. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 39256913 PMCID: PMC11891085 DOI: 10.1080/10255842.2024.2399038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Bone-anchored limbs (BALs) are socket prosthesis alternatives, directly fixing to residual bone via osseointegrated implant. There is a need to quantify multi-level effects of rehabilitation for transfemoral BAL users (i.e. changes in joint loading and movement patterns). Our primary objective was determining feasibility of using optimal control to predict gait biomechanics compared to ground-truth experimental data from transfemoral BAL users. A secondary objective was examining biomechanical effects from estimated changes in hip abductor muscle strength. We developed and validated a workflow for predicting gait biomechanics in four transfemoral BAL users and investigated the biomechanical effects of altered hip abductor strengths.
Collapse
Affiliation(s)
| | | | - R. Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Denver, Denver CO
| | - Cory L. Christiansen
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora CO
- Department of Veterans Affairs Eastern Colorado Healthcare System, Aurora CO
| | - Jason W. Stoneback
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora CO
| | - Brecca M. M. Gaffney
- Department of Mechanical Engineering, University of Colorado Denver, Denver CO
- Department of Veterans Affairs Eastern Colorado Healthcare System, Aurora CO
- Center for Bioengineering, University of Colorado Denver, Aurora CO
| |
Collapse
|
5
|
Vinson AL, Vandenberg NW, Awad ME, Christiansen CL, Stoneback JW, M M Gaffney B. The biomechanical influence of transtibial Bone-Anchored limbs during walking. J Biomech 2024; 168:112098. [PMID: 38636112 PMCID: PMC11151175 DOI: 10.1016/j.jbiomech.2024.112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Individuals with unilateral transtibial amputation (TTA) using socket prostheses demonstrate asymmetric joint biomechanics during walking, which increases the risk of secondary comorbidities (e.g., low back pain (LBP), osteoarthritis (OA)). Bone-anchored limbs are an alternative to socket prostheses, yet it remains unknown how they influence multi-joint loading. Our objective was to determine the influence of bone-anchored limb use on multi-joint biomechanics during walking. Motion capture data (kinematics, ground reaction forces) were collected during overground walking from ten participants with unilateral TTA prior to (using socket prostheses) and 12-months after bone-anchored limb implantation. Within this year, each participant completed a rehabilitation protocol that guided progression of loading based on patient pain response and optimized biomechanics. Musculoskeletal models were developed at each testing timepoint (baseline or 12-months after implantation) and used to calculate joint kinematics, internal joint moments, and joint reaction forces (JRFs). Analyses were performed during three stance periods on each limb. The between-limb normalized symmetry index (NSI) was calculated for joint moments and JRF impulses. Discrete (range of motion (ROM), impulse NSI) dependent variables were compared before and after implantation using paired t-tests with Bonferroni-Holm corrections while continuous (ensemble averages of kinematics, moments, JRFs) were compared using statistical parametric mapping (p < 0.05). When using a bone-anchored limb, frontal plane pelvic (residual: pre = 9.6 ± 3.3°, post = 6.3 ± 2.5°, p = 0.004; intact: pre = 10.2 ± 3.9°, post = 7.9 ± 2.6°, p = 0.006) and lumbar (residual: pre = 15.9 ± 7.0°, post = 10.6 ± 2.5°, p = 0.024, intact: pre = 17.1 ± 7.0°, post = 11.4 ± 2.8°, p = 0.014) ROM was reduced compared to socket prosthesis use. The intact limb hip extension moment impulse increased (pre = -11.0 ± 3.6 Nm*s/kg, post = -16.5 ± 4.4 Nm*s/kg, p = 0.005) and sagittal plane hip moment impulse symmetry improved (flexion: pre = 23.1 ± 16.0 %, post = -3.9 ± 19.5 %, p = 0.004, extension: pre = 29.2 ± 20.3 %, post = 8.7 ± 22.9 %, p = 0.049). Residual limb knee extension moment impulse decreased compared to baseline (pre = 15.7 ± 10.8 Nm*s/kg, post = 7.8 ± 3.9 Nm*s/kg, p = 0.030). These results indicate that bone-anchored limb implantation alters multi-joint biomechanics, which may impact LBP or OA risk factors in the TTA population longitudinally.
Collapse
Affiliation(s)
- Amanda L Vinson
- Department of Mechanical Engineering, University of Colorado Denver, Denver CO, United States
| | - Nicholas W Vandenberg
- Department of Mechanical Engineering, University of Colorado Denver, Denver CO, United States
| | - Mohamed E Awad
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Cory L Christiansen
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, CO, United States
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Brecca M M Gaffney
- Department of Mechanical Engineering, University of Colorado Denver, Denver CO, United States; Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, CO, United States; Center for Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
6
|
Kobayashi T, Jor A, He Y, Hu M, Koh MWP, Hisano G, Hara T, Hobara H. Transfemoral prosthetic simulators versus amputees: ground reaction forces and spatio-temporal parameters in gait. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231854. [PMID: 38545618 PMCID: PMC10966393 DOI: 10.1098/rsos.231854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
This study aimed to compare the ground reaction forces (GRFs) and spatio-temporal parameters as well as their asymmetry ratios in gait between individuals wearing a transfemoral prosthetic simulator (TFSim) and individuals with unilateral transfemoral amputation (TFAmp) across a range of walking speeds (2.0-5.5 km h-1). The study recruited 10 non-disabled individuals using TFSim and 10 individuals with unilateral TFAmp using a transfemoral prosthesis. Data were collected using an instrumented treadmill with built-in force plates, and subsequently, the GRFs and spatio-temporal parameters, as well as their asymmetry ratios, were analysed. When comparing the TFSim and TFAmp groups, no significant differences were found among the gait parameters and asymmetry ratios of all tested metrics except the vertical GRFs. The TFSim may not realistically reproduce the vertical GRFs during the weight acceptance and push-off phases. The structural and functional variations in prosthetic limbs and components between the TFSim and TFAmp groups may be primary contributors to the difference in the vertical GRFs. These results suggest that TFSim might be able to emulate the gait of individuals with TFAmp regarding the majority of spatio-temporal and GRF parameters. However, the vertical GRFs of TFSim should be interpreted with caution.
Collapse
Affiliation(s)
- Toshiki Kobayashi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Abu Jor
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Yufan He
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Mingyu Hu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Mark W. P. Koh
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Genki Hisano
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Takeshi Hara
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hiroaki Hobara
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
7
|
Anderson AJ, Gauthier KA, Varre MS, Nickerson KA, Muir BC, Aubin PM. A robotic emulator for the systematic exploration of transtibial biarticular prosthesis designs. J Rehabil Assist Technol Eng 2024; 11:20556683241280733. [PMID: 39290655 PMCID: PMC11406492 DOI: 10.1177/20556683241280733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
People with transtibial limb loss frequently experience suboptimal gait outcomes. This is partly attributable to the absence of the biarticular gastrocnemius muscle, which plays a unique role in walking. Although a recent surge of biarticular prostheses aims to restore gastrocnemius function, the broad design space and lack of consensus on optimal hardware and control strategies present scientific and engineering challenges. This study introduces a robotic biarticular prosthesis emulator, comprising a uniarticular ankle-foot prosthesis and knee flexion exoskeleton, each actuated by a custom off-board system. Benchtop experiments were conducted to characterize the emulator's mechatronic performance. Walking experiments with one transtibial amputee demonstrated the system's capability to provide knee and ankle assistance. The -3 dB bandwidths for the knee exoskeleton's torque and motor velocity controllers were measured at approximately 5 Hz and 100 Hz, respectively. A feedforward iterative learning controller reduced the root-mean-squared torque tracking error from 6.04 Nm to 0.99 Nm in hardware-in-the-loop experiments, an 84% improvement. User-preference-based tuning yielded a peak knee torque of approximately 20% of the estimated biological knee moment. This biarticular prosthesis emulator demonstrates significant potential as a versatile research platform that can offer valuable insights for the advancement of lower-limb assistive devices.
Collapse
Affiliation(s)
- Anthony J Anderson
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Kira A Gauthier
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Mathew Sunil Varre
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Kimberly A Nickerson
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Brittney C Muir
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Patrick M Aubin
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Su B, Gutierrez-Farewik EM. Simulating human walking: a model-based reinforcement learning approach with musculoskeletal modeling. Front Neurorobot 2023; 17:1244417. [PMID: 37901705 PMCID: PMC10601656 DOI: 10.3389/fnbot.2023.1244417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Recent advancements in reinforcement learning algorithms have accelerated the development of control models with high-dimensional inputs and outputs that can reproduce human movement. However, the produced motion tends to be less human-like if algorithms do not involve a biomechanical human model that accounts for skeletal and muscle-tendon properties and geometry. In this study, we have integrated a reinforcement learning algorithm and a musculoskeletal model including trunk, pelvis, and leg segments to develop control modes that drive the model to walk. Methods We simulated human walking first without imposing target walking speed, in which the model was allowed to settle on a stable walking speed itself, which was 1.45 m/s. A range of other speeds were imposed for the simulation based on the previous self-developed walking speed. All simulations were generated by solving the Markov decision process problem with covariance matrix adaptation evolution strategy, without any reference motion data. Results Simulated hip and knee kinematics agreed well with those in experimental observations, but ankle kinematics were less well-predicted. Discussion We finally demonstrated that our reinforcement learning framework also has the potential to model and predict pathological gait that can result from muscle weakness.
Collapse
Affiliation(s)
- Binbin Su
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elena M. Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Raveendranathan V, Kooiman VGM, Carloni R. Musculoskeletal model of osseointegrated transfemoral amputees in OpenSim. PLoS One 2023; 18:e0288864. [PMID: 37768981 PMCID: PMC10538745 DOI: 10.1371/journal.pone.0288864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/03/2023] [Indexed: 09/30/2023] Open
Abstract
This study presents a generic OpenSim musculoskeletal model of people with an osseointegrated unilateral transfemoral amputation wearing a generic prosthesis. The model, which consists of seventy-six musculotendon units and two ideal actuators at the knee and ankle joints of the prosthesis, is tested by designing an optimal control strategy that guarantees the tracking of experimental amputee data during level-ground walking while finding the actuators' torques and minimizing the muscle forces. The model can be made subject-specific and, as such, is able to reproduce the kinematics and dynamics of both healthy and amputee subjects. The model provides a tool to analyze the biomechanics of level-ground walking and to understand the contribution of the muscles and of the prosthesis' actuators. The proposed OpenSim musculoskeletal model is released as support material to this study.
Collapse
Affiliation(s)
- Vishal Raveendranathan
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Vera G. M. Kooiman
- Orthopaedic Research Laboratory and Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raffaella Carloni
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Driessen JJ, Laffranchi M, De Michieli L. A reduced-order closed-loop hybrid dynamic model for design and development of lower limb prostheses. WEARABLE TECHNOLOGIES 2023; 4:e10. [PMID: 38487762 PMCID: PMC10936358 DOI: 10.1017/wtc.2023.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/17/2024]
Abstract
This manuscript presents a simplified dynamic human-prosthesis model and simulation framework for the purpose of designing and developing lower limb prosthesis hardware and controllers. The objective was to provide an offline design tool to verify the closed-loop behavior of the prosthesis with the human, in order to avoid relying solely on limiting kinematic and kinetic reference trajectories of (able-bodied) subjects and associated static or inverse dynamic analyses, while not having to resort to complete neuromusculoskeletal models of the human that require extensive optimizations to run. The presented approach employs a reduced-order model that includes only the prosthetic limb and trunk in a multi-body dynamic model. External forces are applied to the trunk during stance phase of the intact leg to represent its presence. Walking is realized by employing the well-known spring-loaded inverted pendulum model, which is shown to generate realistic dynamics on the prosthesis while maintaining a stable and modifiable gait. This simple approach is inspired from the rationale that the human is adaptive, and from the desire to facilitate modifications or inclusions of additional user actions. The presented framework is validated with two use cases, featuring a commercial and research knee prosthesis in combination with a passive ankle prosthesis, performing a continuous sequence of standing still, walking at different velocities and stopping.
Collapse
Affiliation(s)
| | - Matteo Laffranchi
- Rehab Technologies Lab, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | | |
Collapse
|
11
|
Willson AM, Anderson AJ, Richburg CA, Muir BC, Czerniecki J, Steele KM, Aubin PM. Full body musculoskeletal model for simulations of gait in persons with transtibial amputation. Comput Methods Biomech Biomed Engin 2023; 26:412-423. [PMID: 35499924 PMCID: PMC9626388 DOI: 10.1080/10255842.2022.2065630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper describes the development, properties, and evaluation of a musculoskeletal model that reflects the anatomical and prosthetic properties of a transtibial amputee using OpenSim. Average passive prosthesis properties were used to develop CAD models of a socket, pylon, and foot to replace the lower leg. Additional degrees of freedom (DOF) were included in each joint of the prosthesis for potential use in a range of research areas, such as socket torque and socket pistoning. The ankle has three DOFs to provide further generality to the model. Seven transtibial amputee subjects were recruited for this study. 3 D motion capture, ground reaction force, and electromyographic (EMG) data were collected while participants wore their prescribed prosthesis, and then a passive prototype prosthesis instrumented with a 6-DOF load cell in series with the pylon. The model's estimates of the ankle, knee, and hip kinematics comparable to previous studies. The load cell provided an independent experimental measure of ankle joint torque, which was compared to inverse dynamics results from the model and showed a 7.7% mean absolute error. EMG data and muscle outputs from OpenSim's Static Optimization tool were qualitatively compared and showed reasonable agreement. Further improvements to the muscle characteristics or prosthesis-specific foot models may be necessary to better characterize individual amputee gait. The model is open-source and available at (https://simtk.org/projects/biartprosthesis) for other researchers to use to advance our understanding and amputee gait and assist with the development of new lower limb prostheses.
Collapse
Affiliation(s)
- Andrea M. Willson
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| | - Anthony J. Anderson
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| | | | - Brittney C. Muir
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| | - Joseph Czerniecki
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA,Department of Rehabilitation Medicine, University of Washington, Seattle WA, USA
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA
| | - Patrick M. Aubin
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| |
Collapse
|
12
|
Demeco A, Frizziero A, Nuresi C, Buccino G, Pisani F, Martini C, Foresti R, Costantino C. Gait Alteration in Individual with Limb Loss: The Role of Inertial Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:1880. [PMID: 36850475 PMCID: PMC9964846 DOI: 10.3390/s23041880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Amputation has a big impact on the functioning of patients, with negative effects on locomotion and dexterity. In this context, inertial measurement units represent a useful tool in clinical practice for motion analysis, and in the development of personalized aids to improve a patient's function. To date, there is still a gap of knowledge in the scientific literature on the application of inertial sensors in amputee patients. Thus, the aim of this narrative review was to collect the current knowledge on this topic and stimulate the publication of further research. Pubmed, Embase, Scopus, and Cochrane Library publications were screened until November 2022 to identify eligible studies. Out of 444 results, we selected 26 articles focused on movement analysis, risk of falls, energy expenditure, and the development of sensor-integrated prostheses. The results showed that the use of inertial sensors has the potential to improve the quality of life of patients with prostheses, increasing patient safety through the detection of gait alteration; enhancing the socio-occupational reintegration through the development of highly technologic and personalized prosthesis; and by monitoring the patients during daily life to plan a tailored rehabilitation program.
Collapse
Affiliation(s)
- Andrea Demeco
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonio Frizziero
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Christian Nuresi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Francesco Pisani
- Department of Human Neuroscience, University la Sapienza Rome, 00185 Rome, Italy
| | - Chiara Martini
- Department of Diagnostic, Parma University Hospital, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Cosimo Costantino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
13
|
Seth M, Coyle PC, Pohlig RT, Beisheim EH, Horne JR, Hicks GE, Sions JM. Gait asymmetry is associated with performance-based physical function among adults with lower-limb amputation. Physiother Theory Pract 2022; 38:3108-3118. [PMID: 34657569 PMCID: PMC9013390 DOI: 10.1080/09593985.2021.1990449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/10/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Adults with lower-limb amputation walk with an asymmetrical gait and exhibit poor functional outcomes, which may negatively impact quality-of-life. OBJECTIVE To evaluate associations between gait asymmetry and performance-based physical function among adults with lower-limb amputation. METHODS A cross-sectional study involving 38 adults with a unilateral transtibial (N = 24; 62.5 ± 10.5 years) or transfemoral amputation (N = 14; 59.9 ± 9.5 years) was conducted. Following gait analysis (capturing step length and stance time asymmetry at self-selected (SSWS) and fast walking speeds (FWS)), participants completed performance-based measures (i.e. Timed Up and Go (TUG), the 10-Meter Walk Test (10mwt), and the 6-Minute Walk Test (6MWT)). RESULTS Step length and stance time asymmetry (at SSWS and FWS) were significantly correlated with each performance-based measure (p < .001 to p = .035). Overall, models with gait measures obtained at SSWS explained 40.1%, 46.8% and 40.1% of the variance in TUG-time (p = .022), 10mwt-speed (p = .003) and 6MWT-distance (p = .010), respectively. Models with gait measures obtained at FWS explained 70.0%, 59.8% and 51.8% of the variance in TUG-time (p < .001), 10mwt-speed (p < .001), and 6MWT-distance (p < .001), respectively. CONCLUSIONS Increases in step length or stance time asymmetry are associated with increased TUG-time, slower 10mwt-speed, and reduced 6MWT-distance. Findings suggest gait asymmetry may be a factor in poor functional outcomes following lower-limb amputation.
Collapse
Affiliation(s)
- Mayank Seth
- Delaware Limb Loss Studies, Department of Physical Therapy, University of Delaware, Newark DE
| | - Peter C Coyle
- Delaware Spine Studies, Department of Physical Therapy, University of Delaware, Newark DE
| | - Ryan T Pohlig
- Biostatistics Core Facility, University of Delaware, Newark, DE
| | - Emma H Beisheim
- Delaware Limb Loss Studies, Department of Physical Therapy, University of Delaware, Newark DE
| | - John R Horne
- Independence Prosthetics-Orthotics, Inc., Newark, DE
| | - Gregory E Hicks
- Delaware Spine Studies, Department of Physical Therapy, University of Delaware, Newark DE
| | - Jaclyn Megan Sions
- Delaware Limb Loss Studies, Department of Physical Therapy, University of Delaware, Newark DE
| |
Collapse
|
14
|
Zhang Z, Zhang J, Luo Q, Chou CH, Xie A, Niu CM, Hao M, Lan N. A Biorealistic Computational Model Unfolds Human-Like Compliant Properties for Control of Hand Prosthesis. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2022; 3:150-161. [PMID: 36712316 PMCID: PMC9870270 DOI: 10.1109/ojemb.2022.3215726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: Human neuromuscular reflex control provides a biological model for a compliant hand prosthesis. Here we present a computational approach to understanding the emerging human-like compliance, force and position control, and stiffness adaptation in a prosthetic hand with a replica of human neuromuscular reflex. Methods: A virtual twin of prosthetic hand was constructed in the MuJoCo environment with a tendon-driven anthropomorphic hand structure. Biorealistic mathematic models of muscle, spindle, spiking-neurons and monosynaptic reflex were implemented in neuromorphic chips to drive the virtual hand for real-time control. Results: Simulation showed that the virtual hand acquired human-like ability to control fingertip position, force and stiffness for grasp, as well as the capacity to interact with soft objects by adaptively adjusting hand stiffness. Conclusion: The biorealistic neuromorphic reflex model restores human-like neuromuscular properties for hand prosthesis to interact with soft objects.
Collapse
Affiliation(s)
- Zhuozhi Zhang
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Jie Zhang
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Qi Luo
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Chih-Hong Chou
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
| | - Anran Xie
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Chuanxin M Niu
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
| | - Manzhao Hao
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
| | - Ning Lan
- Laboratory of Neurorehabilitation Engineering, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
15
|
Anderson AJ, Hudak YF, Gauthier KA, Muir BC, Aubin PM. Design and Evaluation of a Knee Flexion Assistance Exoskeleton for People with Transtibial Amputation. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176102 DOI: 10.1109/icorr55369.2022.9896485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
People with below-knee amputation walk with asymmetric gaits that over time can lead to further musculoskeletal disorders and decreased quality of life. While prosthesis technology is improving, prosthetic ankles may be fundamentally limited in their ability to restore healthy walking patterns because they do not assist the residual knee joint. The knee on the residual limb has muscular deficits due to the loss of the gastrocnemius, a biarticular muscle that crosses both the ankle and knee. Here we present the design, development, and preliminary evaluation of a robotic knee exoskeleton for people with transtibial amputation. The device is intended to restore gastrocnemius-like flexion moments to the knee on the residual limb. The exoskeleton uses a custom offboard actuation and control system to allow for a simple and lightweight design with high torque capabilities. A preliminary walking experiment with one person with transtibial amputation was conducted. The exoskeleton provided a range of knee flexion torque profiles and had an RMS tracking error of 1.9 Nm across four assistance conditions. This device will be used in future studies to explore the effects of providing knee flexion assistance to people with transtibial amputation during walking. Long term, findings from studies with this exoskeleton could motivate future assistive device designs that improve walking mechanics and quality of life for people with limb loss.
Collapse
|
16
|
The Functionality Verification through Pilot Human Subject Testing of MyFlex-δ: An ESR Foot Prosthesis with Spherical Ankle Joint. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most biomechanical research has focused on level-ground walking giving less attention to other conditions. As a result, most lower limb prosthesis studies have focused on sagittal plane movements. In this paper, an ESR foot is presented, of which five different stiffnesses were optimized for as many weight categories of users. It is characterized by a spherical ankle joint, with which, combined with the elastic elements, the authors wanted to create a prosthesis that gives the desired stiffness in the sagittal plane but at the same time, gives flexibility in the other planes to allow the adaptation of the foot prosthesis to the ground conditions. The ESR foot was preliminarily tested by participants with transfemoral amputation. After a brief familiarization with the device, each participant was asked to wear markers and to walk on a sensorized treadmill to measure their kinematics and kinetics. Then, each participant was asked to leave feedback via an evaluation questionnaire. The measurements and feedback allowed us to evaluate the performance of the prosthesis quantitatively and qualitatively. Although there were no significant improvements on the symmetry of the gait, due also to very limited familiarization time, the participants perceived an improvement brought by the spherical ankle joint.
Collapse
|
17
|
Tiwari A, Kujur A, Kumar J, Joshi D. Investigating the Effect of Real-Time Center of Pressure (CoP) Feedback Training on the Swing Phase of Lower Limb Kinematics in Transfemoral Prostheses with SACH foot. J Biomech Eng 2021; 144:1130976. [PMID: 34951460 DOI: 10.1115/1.4053364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/08/2022]
Abstract
Transfemoral amputee often encounters reduced toe clearance resulting in trip-related falls. Swing phase joint angles have been shown to influence the toe clearance therefore, training intervention that targets shaping the swing phase joint angles can potentially enhance toe clearance. The focus of this study was to investigate the effect of the shift in the location of the center of pressure (CoP) during heel strike on modulation of the swing phase joint angles in able-bodied participants (n=6) and transfemoral amputees (n=3). We first developed a real-time CoP-based visual feedback system such that participants could shift the CoP during treadmill walking. Next, the kinematic data were collected during two different walking sessions- baseline (without feedback) and feedback (shifting the CoP anteriorly/posteriorly at heel strike to match the target CoP location). Primary swing phase joint angle adaptations were observed with feedback such that during the mid-swing phase, posterior CoP shift feedback significantly increases (p<0.05) the average hip and knee flexion angle by 11.55 degrees and 11.86 degrees respectively in amputees, whereas a significant increase (p<0.05) in ankle dorsiflexion, hip and knee flexion angle by 3.60 degrees, 3.22 degrees, and 1.27 degrees respectively compared to baseline was observed in able-bodied participants. Moreover, an opposite kinematic adaptation was seen during anterior CoP shift feedback. Overall, results confirm a direct correlation between the CoP shift and the modulation in the swing phase lower limb joint angles.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Abhijeet Kujur
- Department of Design, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jyoti Kumar
- Department of Design, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
18
|
Sibley AR, Strike S, Moudy SC, Tillin NA. The associations between asymmetries in quadriceps strength and gait in individuals with unilateral transtibial amputation. Gait Posture 2021; 90:267-273. [PMID: 34536691 DOI: 10.1016/j.gaitpost.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with unilateral transtibial amputations (ITTAs) are asymmetrical in quadriceps strength. It is unknown if this is associated with gait performance characteristics such as walking speed and limb symmetry. RESEARCH QUESTION Are quadriceps strength asymmetries related to walking speed and/ or gait asymmetries in ITTAs? METHODS Knee-extensor isometric maximum voluntary torque (MVT) and rate of torque development (RTD) were measured in eight ITTAs. Gait data were captured as the ITTAs walked at self-selected habitual and fast speeds. Step length and single support time, peak knee extension moments and their impulse and peak vertical ground reaction force (vGRF) in the braking and propulsive phases of stance were extracted. Bilateral Asymmetry Index (BAI) and, for gait variables only, difference in BAI between walking speeds (ΔBAI) were calculated. Correlation analyses assessed the relationships between MVT and RTD asymmetry and (1) walking speed; (2) gait asymmetries. RESULTS Associations between strength and gait BAIs generally became more apparent at faster walking speeds, and when the difference in BAI between fast and habitual walking speed was considered. BAI RTD was strongly negatively correlated with habitual and fast walking speeds (r=∼0.83). Larger BAI RTD was strongly correlated with propulsive vGRF BAI in fast walking, and larger ΔBAIs in vGRF during both the braking and propulsion phases of gait (r = 0.74-0.92). ITTAs who exhibited greater BAI MVT showed greater ΔBAI in single support time (r = 0.83). SIGNIFICANCE While MVT and RTD BAI appear to be associated with gait asymmetries in ITTAs, the magnitude of the asymmetry in RTD appears to be a more sensitive marker of walking speed. Based on these results, it's possible that strengthening the knee-extensors of the amputated limb to improve both MVT and RTD symmetry may benefit walking speed, and reduce asymmetrical loading in gait.
Collapse
Affiliation(s)
- Amy R Sibley
- Department of Life Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Siobhán Strike
- Department of Life Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Sarah C Moudy
- Department of Life Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Neale A Tillin
- Department of Life Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| |
Collapse
|
19
|
Tiwari A, Joshi D. Design and Validation of a Real-Time Visual Feedback System to Improve Minimum Toe Clearance (mTC) in Transfemoral Amputees. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1711-1722. [PMID: 34398756 DOI: 10.1109/tnsre.2021.3105139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tripping is accompanied by reduced minimum toe clearance (mTC) during the swing phase of gait. The risk of fall due to tripping among transfemoral amputees is nearly 67% which is greater than the transtibial amputees. Therefore, intervention to improve mTC can potentially enhance the quality of life among transfemoral amputees. In this paper, we first develop a real-time visual feedback system with center of pressure (CoP) information. Next, we recruited six non-disabled and three transfemoral amputees to investigate the effect on mTC while participants were trained to shift the CoP anteriorly/posteriorly during heel strike. Finally, to assess the lasting effect of training on mTC, retention trials were conducted without feedback. During feedback, posterior shift in the CoP improved the mTC significantly from 4.68 ± 0.40 cm to 6.12 ± 0.68 cm (p < 0.025) in non-disabled participants. A similar significant improvement in mTC from 4.60 ± 0.55 cm to 5.62 ± 0.57 cm was observed in amputees during posterior shift of CoP. Besides mTC, maximal toe clearances, i.e., maxTC1 and maxTC2, also showed a significant increase (p < 0.025) during the posterior shift of CoP in both the participants. Moreover, during retention, mTC did not differ significantly (p > 0.05) from feedback condition in amputee, suggesting a positive effect of feedback training. The foot-to-ground angle (FGA) at mTC increased significantly (p < 0.025) during posterior shift feedback in non-disabled suggests active ankle dorsiflexion in increasing mTC. However, in amputees, FGA at mTC did not differ significantly during both anterior and posterior CoP shift feedback. The present findings suggest CoP feedback as a potential strategy during gait rehabilitation of transfemoral amputees.
Collapse
|
20
|
Sepp LA, Baum BS, Nelson-Wong E, Silverman AK. Hip Joint Contact Loading and Muscle Forces During Running With a Transtibial Amputation. J Biomech Eng 2021; 143:031012. [PMID: 33269790 DOI: 10.1115/1.4049227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 11/08/2022]
Abstract
People with unilateral transtibial amputations (TTA) have greater risks of bilateral hip osteoarthritis, related to asymmetric biomechanics compared to people without TTA. Running is beneficial for physical health and is gaining popularity. However, people with TTA may not have access to running-specific prostheses (RSPs), which are designed for running, and may instead run using their daily-use prosthesis (DUP). Differences in joint loading may result from prosthesis choice; thus, it is important to characterize changes in peak and impulsive hip joint contact loading during running. Six people with and without TTA ran at 3.5 m/s while ground reaction forces, kinematics, and electromyography were collected. People with TTA ran using their own RSP and DUP. Musculoskeletal models incorporating prosthesis type of each individual were used to quantify individual muscle forces and hip joint contact forces (HJCFs) during running. People using RSPs had smaller bilateral peak hip joint contact forces compared to when wearing DUPs during stance and swing, and a smaller impulse over the entire gait cycle. Greater amputated leg peak hip joint contact forces for people wearing DUPs compared to RSPs occurred with greater forces from the ipsilateral gluteus maximus during stance. People with TTA also had greater bilateral peak hip joint contact forces during swing compared to people without TTA, which occurred with greater peak gluteus medius forces. Running with more compliant RSPs may be beneficial for long-term joint health by reducing peak and impulsive hip loading compared to DUPs.
Collapse
Affiliation(s)
- Lauren A Sepp
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401
| | - Brian S Baum
- School of Physical Therapy, Regis University, Denver, CO 80221
| | | | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois Street Golden, Golden, CO 80401
| |
Collapse
|
21
|
Harper NG, Wilken JM, Neptune RR. Muscle Contributions to Balance Control During Amputee and Nonamputee Stair Ascent. J Biomech Eng 2020; 142:121007. [PMID: 32469051 DOI: 10.1115/1.4047387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/08/2022]
Abstract
Dynamic balance is controlled by lower-limb muscles and is more difficult to maintain during stair ascent compared to level walking. As a result, individuals with lower-limb amputations often have difficulty ascending stairs and are more susceptible to falls. The purpose of this study was to identify the biomechanical mechanisms used by individuals with and without amputation to control dynamic balance during stair ascent. Three-dimensional muscle-actuated forward dynamics simulations of amputee and nonamputee stair ascent were developed and contributions of individual muscles, the passive prosthesis, and gravity to the time rate of change of angular momentum were determined. The prosthesis replicated the role of nonamputee plantarflexors in the sagittal plane by contributing to forward angular momentum. The prosthesis largely replicated the role of nonamputee plantarflexors in the transverse plane but resulted in a greater change of angular momentum. In the frontal plane, the prosthesis and nonamputee plantarflexors contributed oppositely during the first half of stance while during the second half of stance, the prosthesis contributed to a much smaller extent. This resulted in altered contributions from the intact leg plantarflexors, vastii and hamstrings, and the intact and residual leg hip abductors. Therefore, prosthetic devices with altered contributions to frontal-plane angular momentum could improve balance control during amputee stair ascent and minimize necessary muscle compensations. In addition, targeted training could improve the force production magnitude and timing of muscles that regulate angular momentum to improve balance control.
Collapse
Affiliation(s)
- Nicole G Harper
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| | - Jason M Wilken
- Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX 78234; Department of Physical Therapy and Rehabilitation Science, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52240
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| |
Collapse
|
22
|
Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech Model Mechanobiol 2020; 20:339-358. [PMID: 33026565 DOI: 10.1007/s10237-020-01389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/19/2020] [Indexed: 01/14/2023]
Abstract
Quantification of lumbar spine load transfer is important for understanding low back pain, especially among persons with a lower limb amputation. Computational modeling provides a helpful solution for obtaining estimates of in vivo loads. A multiscale model was constructed by combining musculoskeletal and finite element (FE) models of the lumbar spine to determine tissue loading during daily activities. Three-dimensional kinematic and ground reaction force data were collected from participants with ([Formula: see text]) and without ([Formula: see text]) a unilateral transtibial amputation (TTA) during 5 sit-to-stand trials. We estimated tissue-level load transfer from the multiscale model by controlling the FE model with intervertebral kinematics and muscle forces predicted by the musculoskeletal model. Annulus fibrosis stress, intradiscal pressure (IDP), and facet contact forces were calculated using the FE model. Differences in whole-body kinematics, muscle forces, and tissue-level loads were found between participant groups. Notably, participants with TTA had greater axial rotation toward their intact limb ([Formula: see text]), greater abdominal muscle activity ([Formula: see text]), and greater overall tissue loading throughout sit-to-stand ([Formula: see text]) compared to able-bodied participants. Both normalized (to upright standing) and absolute estimates of L4-L5 IDP were close to in vivo values reported in the literature. The multiscale model can be used to estimate the distribution of loads within different lumbar spine tissue structures and can be adapted for use with different activities, populations, and spinal geometries.
Collapse
|
23
|
Abstract
Specifications of actuators when interacting with biological systems such as the human body are entirely different from those used in industrial machines or robots. One important instance of such applications is assistive devices and prostheses. Among various approaches in designing prostheses, recently, semi-active systems attracted the interest of researchers. Even more, some commercial systems benefit from designs such as implementing an adjustable damper in the ankle prosthesis to increase range of motion. The main reason for adding damper is to assist amputees’ walking locomotion on slopes (especially downward). In this paper, we introduce a hydraulic damper design for use in the transtibial prosthetic foot. In the fabricated hydraulic prosthetic foot, two one-way flow control valves are exploited to tune the damping ratio in the plantar flexion and dorsiflexion, independently. Using the carbon prosthetic foot in series to a damper and spring could improve mimicking intact foot movement. First, we present the details of the damper and the prosthesis mechanical design. Then, we introduce experiment-based modeling for the damper’s conceptual design in the proposed prosthesis using SIM-Hydraulic and MATLAB. This device is fabricated and tested in a pilot experiment. The compact design with reduced weight and size of the prosthetic foot are additional advantages of the proposed prosthetic foot.
Collapse
|
24
|
Sibley AR, Strike S, Moudy SC, Tillin NA. The effects of long‐term muscle disuse on neuromuscular function in unilateral transtibial amputees. Exp Physiol 2020; 105:408-418. [DOI: 10.1113/ep088087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Amy R. Sibley
- Department of Life SciencesUniversity of Roehampton London UK
- School of Health and Social CareLondon South Bank University London UK
| | - Siobhán Strike
- Department of Life SciencesUniversity of Roehampton London UK
| | - Sarah C. Moudy
- Department of Life SciencesUniversity of Roehampton London UK
- Department of Family MedicineUniversity of North Texas Health Science Center Fort Worth TX USA
| | - Neale A. Tillin
- Department of Life SciencesUniversity of Roehampton London UK
| |
Collapse
|
25
|
Harandi VJ, Ackland DC, Haddara R, Lizama LEC, Graf M, Galea MP, Lee PVS. Gait compensatory mechanisms in unilateral transfemoral amputees. Med Eng Phys 2020; 77:95-106. [PMID: 31919013 DOI: 10.1016/j.medengphy.2019.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/04/2019] [Accepted: 11/28/2019] [Indexed: 01/14/2023]
Abstract
Individuals with unilateral transfemoral amputation depend on compensatory muscle and joint function to generate motion of the lower limbs, which can produce gait asymmetry; however, the functional role of the intact and residual limb muscles of transfemoral amputees in generating progression, support, and mediolateral balance of the body during walking is not well understood. The aim of this study was to quantify the contributions of the intact and the residual limb's contralateral muscles to body center of mass (COM) acceleration during walking in transfemoral amputees. Three-dimensional subject-specific musculoskeletal models of 6 transfemoral amputees fitted with a socket-type prosthesis were developed and used to quantify muscle forces and muscle contributions to the fore-aft, vertical, and mediolateral body COM acceleration using a pseudo-inverse ground reaction force decomposition method during over-ground walking. Anterior pelvic tilt and hip range of motion in the sagittal and frontal planes of the intact limb was significantly larger than those in the residual limb (p<0.05). The mean contributions of the intact limb hip muscles to body COM support, forward propulsion and mediolateral balance were significantly greater than those in the residual limb (p<0.05). Gluteus maximus contributed more to propulsion and support, while gluteus medius contributed more to balance than other muscles in the intact limb than the residual limb. The findings demonstrate the role of the intact limb hip musculature in compensating for reduced or absent muscles and joint function in the residual limb of transfemoral amputees during walking. The results may be useful in developing rehabilitation programs and design of prostheses to improve gait symmetry and mitigate post-operative musculoskeletal pathology.
Collapse
Affiliation(s)
| | | | - Raneem Haddara
- Department of Biomedical Engineering, University of Melbourne, Australia.
| | | | - Mark Graf
- Department of Allied Health, Royal Melbourne Hospital, Melbourne, Australia.
| | - Mary Pauline Galea
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia.
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Australia.
| |
Collapse
|
26
|
De Marchis C, Ranaldi S, Serrao M, Ranavolo A, Draicchio F, Lacquaniti F, Conforto S. Modular motor control of the sound limb in gait of people with trans-femoral amputation. J Neuroeng Rehabil 2019; 16:132. [PMID: 31694650 PMCID: PMC6836453 DOI: 10.1186/s12984-019-0616-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
Background The above-knee amputation of a lower limb is a severe impairment that affects significantly the ability to walk; considering this, a complex adaptation strategy at the neuromuscular level is needed in order to be able to move safely with a prosthetic knee. In literature, it has been demonstrated that muscle activity during walking can be described via the activation of a small set of muscle synergies. The analysis of the composition and the time activation profiles of such synergies have been found to be a valid tool for the description of the motor control schemes in pathological subjects. Methods In this study, we used muscle synergy analysis techniques to characterize the differences in the modular motor control schemes between a population of 14 people with trans-femoral amputation and 12 healthy subjects walking at two different (slow and normal self-selected) speeds. Muscle synergies were extracted from a 12 lower-limb muscles sEMG recording via non-negative matrix factorization. Equivalence of the synergy vectors was quantified by a cross-validation procedure, while differences in terms of time activation coefficients were evaluated through the analysis of the activity in the different gait sub-phases. Results Four synergies were able to reconstruct the muscle activity in all subjects. The spatial component of the synergy vectors did not change in all the analysed populations, while differences were present in the activity during the sound limb’s stance phase. Main features of people with trans-femoral amputation’s muscle synergy recruitment are a prolonged activation of the module composed of calf muscles and an additional activity of the hamstrings’ module before and after the prosthetic heel strike. Conclusions Synergy-based results highlight how, although the complexity and the spatial organization of motor control schemes are the same found in healthy subjects, substantial differences are present in the synergies’ recruitment of people with trans femoral amputation. In particular, the most critical task during the gait cycle is the weight transfer from the sound limb to the prosthetic one. Future studies will integrate these results with the dynamics of movement, aiming to a complete neuro-mechanical characterization of people with trans-femoral amputation’s walking strategies that can be used to improve the rehabilitation therapies.
Collapse
Affiliation(s)
| | - Simone Ranaldi
- Department of Engineering, University Roma TRE, Roma, Italy.
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Roma, Italy.,Rehabilitation Centre, Policlinico Italia, Roma, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Roma, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Roma, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Centre of Space Biomedicine, University of Rome Tor Vergata, Roma, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Roma, Italy
| | | |
Collapse
|
27
|
Grabke EP, Masani K, Andrysek J. Lower Limb Assistive Device Design Optimization Using Musculoskeletal Modeling: A Review. J Med Device 2019. [DOI: 10.1115/1.4044739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractMany individuals with lower limb amputations or neuromuscular impairments face mobility challenges attributable to suboptimal assistive device design. Forward dynamic modeling and simulation of human walking using conventional biomechanical gait models offer an alternative to intuition-based assistive device design, providing insight into the biomechanics underlying pathological gait. Musculoskeletal models enable better understanding of prosthesis and/or exoskeleton contributions to the human musculoskeletal system, and device and user contributions to both body support and propulsion during gait. This paper reviews current literature that have used forward dynamic simulation of clinical population musculoskeletal models to perform assistive device design optimization using optimal control, optimal tracking, computed muscle control (CMC) and reflex-based control. Musculoskeletal model complexity and assumptions inhibit forward dynamic musculoskeletal modeling in its current state, hindering computational assistive device design optimization. Future recommendations include validating musculoskeletal models and resultant assistive device designs, developing less computationally expensive forward dynamic musculoskeletal modeling methods, and developing more efficient patient-specific musculoskeletal model generation methods to enable personalized assistive device optimization.
Collapse
Affiliation(s)
- Emerson Paul Grabke
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kei Masani
- KITE—Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada
| | - Jan Andrysek
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G1R8, Canada
| |
Collapse
|
28
|
Yoder AJ, Silder A, Farrokhi S, Dearth CL, Hendershot BD. Lower Extremity Joint Contributions to Trunk Control During Walking in Persons with Transtibial Amputation. Sci Rep 2019; 9:12267. [PMID: 31439891 PMCID: PMC6706581 DOI: 10.1038/s41598-019-47796-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Controlled trunk motion is crucial for balance and stability during walking. Persons with lower extremity amputation often exhibit abnormal trunk motion, yet underlying mechanisms are not well understood nor have optimal clinical interventions been established. The aim of this work was to characterize associations between altered lower extremity joint moments and altered trunk dynamics in persons with unilateral, transtibial amputation (TTA). Full-body gait data were collected from 10 persons with TTA and 10 uninjured persons walking overground (~1.4 m/s). Experimentally-measured trunk angular accelerations were decomposed into constituent accelerations caused by net joint moments throughout the body using an induced acceleration analysis. Results showed persons with TTA had similar ankle moment magnitude relative to uninjured persons (P > 0.05), but greater trunk angular acceleration induced by the prosthetic ankle which acted to lean the trunk ipsilaterally (P = 0.003). Additionally, persons with TTA had a reduced knee extensor moment relative to uninjured persons (P < 0.001), resulting in lesser sagittal and frontal induced trunk angular accelerations (P < 0.001). These data indicate kinetic compensations at joints other than the lumbar and hip contribute to altered trunk dynamics in persons with a unilateral TTA. Findings may inform development of new clinical strategies to modify problematic trunk motion.
Collapse
Affiliation(s)
- Adam J Yoder
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Various locations, USA. .,Department of Physical & Occupational Therapy, Naval Medical Center, San Diego, CA, USA.
| | - Amy Silder
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Various locations, USA.,Department of Physical & Occupational Therapy, Naval Medical Center, San Diego, CA, USA
| | - Shawn Farrokhi
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Various locations, USA.,Department of Physical & Occupational Therapy, Naval Medical Center, San Diego, CA, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Various locations, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brad D Hendershot
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Various locations, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA.,Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
29
|
Womac ND, Neptune RR, Klute GK. Stiffness and energy storage characteristics of energy storage and return prosthetic feet. Prosthet Orthot Int 2019; 43:266-275. [PMID: 30688551 DOI: 10.1177/0309364618823127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mechanical properties of prosthetic feet can significantly influence amputee gait, but how they vary with respect to limb loading and orientation is infrequently reported. OBJECTIVE The objective of this study is to measure stiffness and energy storage characteristics of prosthetic feet across limb loading and a range of orientations experienced in typical gait. STUDY DESIGN This study included mechanical testing. METHODS Force-displacement data were collected at combinations of 15 sagittal and 5 coronal orientations and used to calculate stiffness and energy storage across prosthetic feet, stiffness categories, and heel wedge conditions. RESULTS Stiffness and energy storage were highly non-linear in both the sagittal and coronal planes. Across all prosthetic feet, stiffness decreased with greater heel, forefoot, medial, and lateral orientations, while energy storage increased with forefoot, medial, and lateral loading orientations. Stiffness category was proportional to stiffness and inversely proportional to energy storage. Heel wedge effects were prosthetic foot dependent. CONCLUSION Orientation, manufacturer, stiffness category, and heel wedge inclusion greatly influenced stiffness and energy storage characteristics. CLINICAL RELEVANCE These results and an available graphical user interface tool may help improve clinical prescriptions by providing prosthetists with quantitative measures to compare prosthetic feet.
Collapse
Affiliation(s)
| | | | - Glenn K Klute
- 2 Center for Limb Loss and MoBility, VA Puget Sound Health Care System, Seattle, WA, USA.,3 University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Does Decreasing Below-Knee Prosthesis Pylon Longitudinal Stiffness Increase Prosthetic Limb Collision and Push-Off Work During Gait? J Appl Biomech 2019; 35:312–319. [PMID: 31141448 DOI: 10.1123/jab.2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Investigations have begun to connect leg prosthesis mechanical properties and user outcomes to optimize prosthesis designs for maximizing mobility. To date, parametric studies have focused on prosthetic foot properties, but not explicitly longitudinal stiffness that is uniquely modified through shock-absorbing pylons. The linear spring function of these devices might affect work performed on the body center-of-mass during walking. This study observed the effects of different levels of pylon stiffness on individual limb work of unilateral below-knee prosthesis users walking at customary and fast speeds. Longitudinal stiffness reductions were associated with minimal increase in prosthetic limb collision and push-off work, but inconsistent changes in sound limb work. These small and variable changes in limb work did not suggest an improvement in mechanical economy due to reductions in stiffness. Fast walking generated greater overall center-of-mass work demands across stiffness conditions. Results indicate limb work asymmetry as the prosthetic limb experienced on average 61% and 36% of collision and push-off work, respectively, relative to the sound limb. A series spring model to estimate residuum and pylon stiffness effects on prosthesis energy storage suggested that minimal changes to limb work may be due to influences of the residual limb which dominate the system response.
Collapse
|
31
|
Pickle NT, Silverman AK, Wilken JM, Fey NP. Statistical analysis of timeseries data reveals changes in 3D segmental coordination of balance in response to prosthetic ankle power on ramps. Sci Rep 2019; 9:1272. [PMID: 30718756 PMCID: PMC6362138 DOI: 10.1038/s41598-018-37581-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/03/2018] [Indexed: 11/09/2022] Open
Abstract
Active ankle-foot prostheses generate mechanical power during the push-off phase of gait, which can offer advantages over passive prostheses. However, these benefits manifest primarily in joint kinetics (e.g., joint work) and energetics (e.g., metabolic cost) rather than balance (whole-body angular momentum, H), and are typically constrained to push-off. The purpose of this study was to analyze differences between active and passive prostheses and non-amputees in coordination of balance throughout gait on ramps. We used Statistical Parametric Mapping (SPM) to analyze time-series contributions of body segments (arms, legs, trunk) to three-dimensional H on uphill, downhill, and level grades. The trunk and prosthetic-side leg contributions to H at toe-off when using the active prosthesis were more similar to non-amputees compared to using a passive prosthesis. However, using either a passive or active prosthesis was different compared to non-amputees in trunk contributions to sagittal-plane H during mid-stance and transverse-plane H at toe-off. The intact side of the body was unaffected by prosthesis type. In contrast to clinical balance assessments (e.g., single-leg standing, functional reach), our analysis identifies significant changes in the mechanics of segmental coordination of balance during specific portions of the gait cycle, providing valuable biofeedback for targeted gait retraining.
Collapse
Affiliation(s)
- Nathaniel T Pickle
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Jason M Wilken
- Center for the Intrepid, Brooke Army Medical Center, JBSA Ft Sam Houston, TX, 78234, USA.,Extremity Trauma and Amputation Center of Excellence, JBSA Ft Sam Houston, TX, 78234, USA
| | - Nicholas P Fey
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.,Department of Physical Medicine and Rehabilitation, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
32
|
Rock CG, Wurdeman SR, Stergiou N, Takahashi KZ. Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses. PLoS One 2018; 13:e0205098. [PMID: 30281652 PMCID: PMC6169964 DOI: 10.1371/journal.pone.0205098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022] Open
Abstract
Stride-to-stride fluctuations of joint kinematics during walking reflect a highly structured organization that is characteristic of healthy gait. The organization of stride-to-stride fluctuations is disturbed in lower-limb prosthesis users, yet the factors contributing to this difference are unclear. One potential contributor to the changes in stride-to-stride fluctuations is the altered push-off mechanics experienced by passive prosthesis users. The purpose of our study was to determine if changes in push-off mechanics affect stride-to-stride fluctuations in transtibial amputees. Twenty-two unilateral transtibial amputees were enrolled in the 6-week cross-over study, where High and Low Activity (based on the Medicare Functional Classification System) prostheses were worn for three weeks each. Data collection took place at the end of the third week. Participants walked on a treadmill in a motion capture laboratory to quantify stride-to-stride fluctuations of the lower extremity joint angle trajectories using the largest Lyapunov Exponent, and over floor-embedded force platforms to enable calculating push-off work from the prosthesis and the sound limb. Push-off work was 140% greater in the High Activity prosthesis compared to the Low Activity prosthesis (p < 0.001), however no significant change was observed in stride-to-stride fluctuations of the ankle between the two prosthesis types (p = 0.576). There was no significant correlation between changes in prosthesis push-off work and the largest Lyapunov exponent. Though differences in push-off work were observed between the two prosthesis types, stride-to-stride fluctuations remained similar, indicating that prosthesis propulsion mechanics may not be a strong determinant of stride-to-stride fluctuations in unpowered transtibial prosthesis users.
Collapse
Affiliation(s)
- Chase G. Rock
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Shane R. Wurdeman
- Department of Clinical and Scientific Affairs, Hanger Clinic, Houston, TX, United States of America
| | - Nicholas Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States of America
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Kota Z. Takahashi
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
33
|
Andrysek J, Tomasi J, Leineweber M, Eshraghi A. A New Modeling Method to Characterize the Stance Control Function of Prosthetic Knee Joints. IEEE Trans Biomed Eng 2018; 66:1184-1192. [PMID: 30222547 DOI: 10.1109/tbme.2018.2869985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Biomechanical models can inform design and optimization of prosthetic devices by connecting empirically derived biomechanical data to device design parameters. A new method is presented to characterize the function of prosthetic stance control under mobility conditions associated with activities of daily living. The method is based on a model of the gait modes corresponding to finite stance control states. METHODS Empirical data from amputee and simulated gait were acquired using a custom-built wearable instrument and input into the model. RESULTS The modeling approach was shown to be robust, responsive, and capable of accurate characterization of controller function under diverse locomotor and prosthetic setup conditions. CONCLUSION Future work is focused on the development of a fully self-contained wearable system, to facilitate collection of large datasets across a variety of user demographics, controller designs, and activities of daily living. SIGNIFICANCE The method offers predictive capability, which can assist in the virtual testing of new designs or modifications.
Collapse
|
34
|
Houdijk H, Wezenberg D, Hak L, Cutti AG. Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation. J Neuroeng Rehabil 2018; 15:76. [PMID: 30255807 PMCID: PMC6157252 DOI: 10.1186/s12984-018-0404-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.
Collapse
Affiliation(s)
- Han Houdijk
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands. .,Department of Research and Development, Heliomare Rehabilitation, Wijk aan Zee, the Netherlands.
| | - Daphne Wezenberg
- Department of Health & Technology
- Human Kinetic Technology, The Hague University of Applied Sciences, The Hague, The Netherlands
| | - Laura Hak
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Andrea Giovanni Cutti
- Production Directorate, Applied Research, INAIL Prosthesis Center, Vigorso di Budrio, Bologna, Italy
| |
Collapse
|
35
|
Harper N, Wilken J, Neptune R. Muscle Function and Coordination of Amputee Stair Ascent. J Biomech Eng 2018; 140:2687662. [PMID: 30029262 DOI: 10.1115/1.4040772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 02/28/2024]
Abstract
Ascending stairs is challenging following transtibial amputation due to the loss of the ankle muscles, which are critical to human movement. Efforts to improve stair ascent following amputation are hindered by limited understanding of how prostheses and remaining muscles contribute to stair ascent. This study developed a three-dimensional muscle-actuated forward dynamics simulation of amputee stair ascent to identify contributions of individual muscles and passive prosthesis to the biomechanical subtasks of stair ascent. The prosthesis was found to provide vertical propulsion throughout stair ascent, similar to non-amputee plantarflexors. However, the timing differed considerably. The prosthesis also contributed to braking, similar to non-amputee soleus, but to a greater extent. In contrast, the prosthesis was unable to replicate the functions of non-amputee gastrocnemius which contributes to forward propulsion during the second half of stance and leg swing initiation. To compensate, hamstrings and vasti of the residual leg increased their contributions to forward propulsion during the first and second halves of stance, respectively. The prosthesis also contributed to medial control, consistent with the non-amputee soleus but not gastrocnemius. Therefore, prosthesis designs that provide additional vertical propulsion as well as forward propulsion, lateral control and leg swing initiation at appropriate points in the gait cycle could improve amputee stair ascent. However, because non-amputee soleus and gastrocnemius contribute oppositely to many subtasks, it may be necessary to couple the prosthesis, which functions most similarly to soleus, with targeted rehabilitation programs focused on muscle groups that can compensate for gastrocnemius.
Collapse
Affiliation(s)
- Nicole Harper
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| | - Jason Wilken
- Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX 78234; Department of Physical Therapy and Rehabilitation Science, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52240
| | - Richard Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| |
Collapse
|
36
|
Nakajima H, Yamamoto S, Katsuhira J. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees. Clin Biomech (Bristol, Avon) 2018; 56:84-89. [PMID: 29864596 DOI: 10.1016/j.clinbiomech.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 04/14/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. METHODS Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. FINDINGS Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. INTERPRETATION These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response.
Collapse
Affiliation(s)
- Hiroshi Nakajima
- Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki 300-0395, Japan.
| | - Sumiko Yamamoto
- International University of Health and Welfare, 1-3-3 Minami-Aoyama, Minato-ku, Tokyo 107-0062, Japan
| | - Junji Katsuhira
- Niigata University of Health and Welfare, 1398, Simami-cho, Niigata 950-3198, Japan
| |
Collapse
|
37
|
Heitzmann DWW, Salami F, De Asha AR, Block J, Putz C, Wolf SI, Alimusaj M. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot. Gait Posture 2018; 64:174-180. [PMID: 29913354 DOI: 10.1016/j.gaitpost.2018.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/12/2018] [Accepted: 06/10/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with trans-tibial amputation show a greater peak prosthetic ankle power (push- off) when using energy storing and returning (ESAR) prosthetic feet as compared to solid-ankle cushion-heel feet. ESAR feet further contribute to the users' body support and thus limit prosthetic ankle motion. To improve ankle motion, articulating prosthetic feet have been introduced. However, articulating feet may diminish push-off. RESEARCH QUESTION Does a novel prosthetic foot, with a serial layout of carbon fibre leaf springs, connected by a multi-centre joint construction, have advantages in kinematics and kinetics over a conventional ESAR prosthetic foot?> METHODS: Eleven individuals with unilateral trans-tibial amputation were fitted with the novel foot (NF) and a conventional ESAR Foot (CF) and underwent 3D gait analysis. As an additional power estimate of the prosthetic ankle, a unified, deformable, segment model approach was applied. Eleven matched individuals without impairments served as a reference. RESULTS The NF shows an effective prosthetic ankle range of motion that is closer to a physiologic ankle range of motion, at 31.6° as compared to 15.2° with CF (CF vs. NF p = 0.003/NF vs. Reference p = 0.171) without reducing the maximum prosthetic ankle joint moment. Furthermore, the NF showed a great increase in prosthetic ankle power (NF 2.89 W/kg vs. CF 1.48 W/kg CF vs. NF p = <0.001) and a reduction of 19% in the peak knee varus moment and 13% in vertical ground reaction forces on the sound side for NF in comparison to CF. SIGNIFICANCE The NF shows that serial carbon fibre leaf springs, connected by a multi-centre joint construction gives a larger ankle joint range of motion and higher ankle power than a conventional carbon fibre structure alone. Consequently load is taken off the contralateral limb, as measured by the decrease in vertical ground reaction forces and peak knee varus moment.
Collapse
Affiliation(s)
- Daniel W W Heitzmann
- Movement Analysis Lab., Department of Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Germany.
| | - Firooz Salami
- Movement Analysis Lab., Department of Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Germany
| | | | - Julia Block
- Movement Analysis Lab., Department of Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Germany
| | - Cornelia Putz
- Movement Analysis Lab., Department of Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Germany
| | - Sebastian I Wolf
- Movement Analysis Lab., Department of Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Germany
| | - Merkur Alimusaj
- Movement Analysis Lab., Department of Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Germany
| |
Collapse
|
38
|
Pickle NT, Grabowski AM, Jeffers JR, Silverman AK. The Functional Roles of Muscles, Passive Prostheses, and Powered Prostheses During Sloped Walking in People With a Transtibial Amputation. J Biomech Eng 2018; 139:2654845. [PMID: 28975280 DOI: 10.1115/1.4037938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/08/2022]
Abstract
Sloped walking is challenging for individuals with transtibial amputation (TTA) due to the functional loss of the ankle plantarflexors. Prostheses that actively generate ankle power may help to restore this lost function. The purpose of this study was to use musculoskeletal modeling and simulation to quantify the mechanical power delivered to body segments by passive and powered prostheses and the remaining muscles in the amputated and intact legs during sloped walking. We generated walking simulations from experimental kinematic and kinetic data on slopes of 0, ±3 deg and ±6 deg in eight people with a TTA using powered and passive prostheses and eight nonamputees. Consistent with our hypothesis, the amputated leg hamstrings generated more power to both legs on uphill slopes in comparison with nonamputees, which may have implications for fatigue or overuse injuries. The amputated leg knee extensors delivered less power to the trunk on downhill slopes (effect size (ES) ≥ 1.35, p ≤ 0.02), which may be due to muscle weakness or socket instability. The power delivered to the trunk from the powered and passive prostheses was not significantly different (p > 0.05), However, using the powered prosthesis on uphill slopes reduced the contributions from the amputated leg hamstrings in all segments (ES ≥ 0.46, p ≤ 0.003), suggesting that added ankle power reduces the need for the hamstrings to compensate for lost ankle muscle function. Neither prosthesis replaced gastrocnemius function to absorb power from the trunk and deliver it to the leg on all slopes.
Collapse
Affiliation(s)
- Nathaniel T Pickle
- Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 e-mail:
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado, 354 UCB, Boulder, CO 80309.,VA Eastern Colorado Healthcare System, Denver, CO 80220 e-mail:
| | - Jana R Jeffers
- Department of Integrative Physiology, University of Colorado, 354 UCB, Boulder, CO 80309 e-mail:
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 e-mail:
| |
Collapse
|
39
|
Actis JA, Nolasco LA, Gates DH, Silverman AK. Lumbar loads and trunk kinematics in people with a transtibial amputation during sit-to-stand. J Biomech 2018; 69:1-9. [DOI: 10.1016/j.jbiomech.2017.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022]
|
40
|
Actis JA, Honegger JD, Gates DH, Petrella AJ, Nolasco LA, Silverman AK. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine. J Biomech 2018; 68:107-114. [DOI: 10.1016/j.jbiomech.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022]
|
41
|
Ray SF, Wurdeman SR, Takahashi KZ. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. J Neuroeng Rehabil 2018; 15:6. [PMID: 29374491 PMCID: PMC5787280 DOI: 10.1186/s12984-018-0347-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background There are many studies that have investigated biomechanical differences among prosthetic feet, but not changes due to adaptation over time. There is a need for objective measures to quantify the process of adaptation for individuals with a transtibial amputation. Mechanical power and work profiles are a primary focus for modern energy-storage-and-return type prostheses, which strive to increase energy return from the prosthesis. The amount of energy a prosthesis stores and returns (i.e., negative and positive work) during stance is directly influenced by the user’s loading strategy, which may be sensitive to alterations during the course of an adaptation period. The purpose of this study was to examine changes in lower limb mechanical work profiles during walking following a three-week adaptation to a new prosthesis. Methods A retrospective analysis was performed on 22 individuals with a unilateral transtibial amputation. Individuals were given a new prosthesis at their current mobility level (K3 or above) and wore it for three weeks. Kinematic and kinetic measures were recorded from overground walking at 0, 1.5, and 3 weeks into the adaptation period at a self-selected pace. Positive and negative work done by the prosthesis and sound ankle-foot were calculated using a unified deformable segment model and a six-degrees-of-freedom model for the knee and hip. Results Positive work from the prosthesis ankle-foot increased by 6.1% and sound ankle-foot by 5.7% after 3 weeks (p = 0.041, 0.036). No significant changes were seen in negative work from prosthesis or sound ankle-foot (p = 0.115, 0.192). There was also a 4.1% increase in self-selected walking speed after 3 weeks (p = 0.038). Our data exhibited large inter-subject variations, in which some individuals followed group trends in work profiles while others had opposite trends in outcome variables. Conclusions After a 3-week adaptation, 14 out of 22 individuals with a transtibial amputation increased energy return from the prosthesis. Such findings could indicate that individuals may better utilize the spring-like function of the prosthesis after an adaptation period. Electronic supplementary material The online version of this article (10.1186/s12984-018-0347-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel F Ray
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Shane R Wurdeman
- Department of Clinical and Scientific Affairs, Hanger Clinic, Houston Medical Center, Houston, TX, USA
| | - Kota Z Takahashi
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
42
|
Russell Esposito E, Miller RH. Maintenance of muscle strength retains a normal metabolic cost in simulated walking after transtibial limb loss. PLoS One 2018; 13:e0191310. [PMID: 29329344 PMCID: PMC5766241 DOI: 10.1371/journal.pone.0191310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022] Open
Abstract
Recent studies on relatively young and fit individuals with limb loss suggest that maintaining muscle strength after limb loss may mitigate the high metabolic cost of walking typically seen in the larger general limb loss population. However, these data are cross-sectional and the muscle strength prior to limb loss is unknown, and it is therefore difficult to draw causal inferences on changes in strength and gait energetics. Here we used musculoskeletal modeling and optimal control simulations to perform a longitudinal study (25 virtual “subjects”) of the metabolic cost of walking pre- and post-limb loss (unilateral transtibial). Simulations of walking were first performed pre-limb loss on a model with two intact biological legs, then post-limb loss on a model with a unilateral transtibial prosthesis, with a cost function that minimized the weighted sum of gait deviations plus metabolic cost. Metabolic costs were compared pre- vs. post-limb loss, with systematic modifications to the muscle strength and prosthesis type (passive, powered) in the post-limb loss model. The metabolic cost prior to limb loss was 3.44±0.13 J/m/kg. After limb loss, with a passive prosthesis the metabolic cost did not increase above the pre-limb loss cost if pre-limb loss muscle strength was maintained (mean -0.6%, p = 0.17, d = 0.17). With 10% strength loss the metabolic cost with the passive prosthesis increased (mean +5.9%, p < 0.001, d = 1.61). With a powered prosthesis, the metabolic cost was at or below the pre-limb loss cost for all subjects with strength losses of 10% and 20%, but increased for all subjects with strength loss of 30% (mean +5.9%, p < 0.001, d = 1.59). The results suggest that maintaining muscle strength may prevent an increase in the metabolic cost of walking following unilateral transtibial limb loss, and that a gait with minimal deviations can be achieved when muscle strength is sufficiently high, even when using a passive prosthesis.
Collapse
Affiliation(s)
- Elizabeth Russell Esposito
- Center for the Intrepid, Brooke Army Medical Center, Department of Rehabilitation Medicine, JBSA, Ft. Sam Houston, Texas, United States of America
- Extremity Trauma and Amputation Center of Excellence, Ft. Sam Houston, Texas, United States of America
| | - Ross H. Miller
- Department of Kinesiology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience & Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Hegarty AK, Petrella AJ, Kurz MJ, Silverman AK. Evaluating the Effects of Ankle-Foot Orthosis Mechanical Property Assumptions on Gait Simulation Muscle Force Results. J Biomech Eng 2017; 139:2594423. [PMID: 27987301 DOI: 10.1115/1.4035472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/08/2022]
Abstract
Musculoskeletal modeling and simulation techniques have been used to gain insights into movement disabilities for many populations, such as ambulatory children with cerebral palsy (CP). The individuals who can benefit from these techniques are often limited to those who can walk without assistive devices, due to challenges in accurately modeling these devices. Specifically, many children with CP require the use of ankle-foot orthoses (AFOs) to improve their walking ability, and modeling these devices is important to understand their role in walking mechanics. The purpose of this study was to quantify the effects of AFO mechanical property assumptions, including rotational stiffness, damping, and equilibrium angle of the ankle and subtalar joints, on the estimation of lower-limb muscle forces during stance for children with CP. We analyzed two walking gait cycles for two children with CP while they were wearing their own prescribed AFOs. We generated 1000-trial Monte Carlo simulations for each of the walking gait cycles, resulting in a total of 4000 walking simulations. We found that AFO mechanical property assumptions influenced the force estimates for all the muscles in the model, with the ankle muscles having the largest resulting variability. Muscle forces were most sensitive to assumptions of AFO ankle and subtalar stiffness, which should therefore be measured when possible. Muscle force estimates were less sensitive to estimates of damping and equilibrium angle. When stiffness measurements are not available, limitations on the accuracy of muscle force estimates for all the muscles in the model, especially the ankle muscles, should be acknowledged.
Collapse
Affiliation(s)
- Amy K Hegarty
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401
| | - Anthony J Petrella
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401
| | - Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 e-mail:
| |
Collapse
|
44
|
Gaffney BMM, Christiansen CL, Murray AM, Myers CA, Laz PJ, Davidson BS. The Effects of Prosthesis Inertial Parameters on Inverse Dynamics: A Probabilistic Analysis. ACTA ACUST UNITED AC 2017; 2:0310031-310038. [DOI: 10.1115/1.4038175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Indexed: 11/08/2022]
Abstract
Joint kinetic measurement is a fundamental tool used to quantify compensatory movement patterns in participants with transtibial amputation (TTA). Joint kinetics are calculated through inverse dynamics (ID) and depend on segment kinematics, external forces, and both segment and prosthetic inertial parameters (PIPS); yet the individual influence of PIPs on ID is unknown. The objective of this investigation was to assess the importance of parameterizing PIPs when calculating ID using a probabilistic analysis. A series of Monte Carlo simulations were performed to assess the influence of uncertainty in PIPs on ID. Multivariate input distributions were generated from experimentally measured PIPs (foot/shank: mass, center of mass (COM), moment of inertia) of ten prostheses and output distributions were hip and knee joint kinetics. Confidence bounds (2.5–97.5%) and sensitivity of outputs to model input parameters were calculated throughout one gait cycle. Results demonstrated that PIPs had a larger influence on joint kinetics during the swing period than the stance period (e.g., maximum hip flexion/extension moment confidence bound size: stance = 5.6 N·m, swing: 11.4 N·m). Joint kinetics were most sensitive to shank mass during both the stance and swing periods. Accurate measurement of prosthesis shank mass is necessary to calculate joint kinetics with ID in participants with TTA with passive prostheses consisting of total contact carbon fiber sockets and dynamic elastic response feet during walking.
Collapse
Affiliation(s)
- Brecca M. M. Gaffney
- Department of Mechanical and Materials Engineering, Human Dynamics Laboratory, University of Denver, Denver, CO 80208 e-mail:
| | - Cory L. Christiansen
- Department of Physical Medicine and Rehabilitation, University of Colorado, Denver, CO 80045
- Denver Geriatric Research Education and Clinical Center, VA Eastern Colorado Health Care System, Denver, CO 80012 e-mail:
| | - Amanda M. Murray
- Department of Physical Medicine and Rehabilitation, University of Colorado, Denver, CO 80045; Denver Geriatric Research Education and Clinical Center, VA Eastern Colorado Health Care System, Denver, CO 80012 e-mail:
| | - Casey A. Myers
- Department of Mechanical and Materials Engineering, Center for Orthopaedic Biomechanics, University of Denver, Denver, CO 80208 e-mail:
| | - Peter J. Laz
- Department of Mechanical and Materials Engineering, Center for Orthopaedic Biomechanics, University of Denver, Denver, CO 80208 e-mail:
| | - Bradley S. Davidson
- Department of Mechanical and Materials Engineering, Human Dynamics Laboratory, University of Denver, 2155 E Wesley Ave. ECS 443, Denver, CO 80208 e-mail:
| |
Collapse
|
45
|
Andrango Castro EM, Konvickova S, Daniel M, Horak Z. Identification of the critical level of implantation of an osseointegrated prosthesis for above-knee amputees. Comput Methods Biomech Biomed Engin 2017; 20:1494-1501. [PMID: 28952363 DOI: 10.1080/10255842.2017.1380799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of our study was to identify potential critical levels of implantation of an osseointegrated prosthesis for above-knee amputees. The implant used was the OPRA system. It was inserted in the femur at four different amputation heights, characterized by their residual limb ratios (0.299, 0.44, 0.58 and 0.73). The stress and strain distribution was evaluated in the bone-implant system during walking, considering a body mass of 100 kg. Considerably high stimulus (11,489 με) in the tissue near the tip was found at the highest implantation level. All models presented small non-physiologic stress values in the tissue around the implant. The results revealed that the implantation level has a decisive effect on bone-implant performance. Mainly, the analysis indicates adverse biomechanical conditions for implantations in very short residual limbs.
Collapse
Affiliation(s)
- Elder Michael Andrango Castro
- a Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering , Czech Technical University in Prague , Prague , Czech Republic
| | - Svatava Konvickova
- a Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering , Czech Technical University in Prague , Prague , Czech Republic
| | - Matej Daniel
- a Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering , Czech Technical University in Prague , Prague , Czech Republic
| | - Zdenek Horak
- a Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering , Czech Technical University in Prague , Prague , Czech Republic.,b Department of Technical Studies, College of Polytechnics Jihlava , Jihlava , Czech Republic
| |
Collapse
|
46
|
Major MJ, Fey NP. Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes. PHYSICAL THERAPY REVIEWS 2017; 22:1-15. [PMID: 29170616 DOI: 10.1080/10833196.2017.1346033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background Selection of prosthesis mechanical characteristics to restore function of persons with lower-limb loss can be framed as an optimization problem to satisfy a given performance objective. However, the choice of a particular objective is critical, and considering only device and generalizable outcomes across users without accounting for inherent motor performance likely restricts a given patient from fully realizing the benefits of a prosthetic intervention. Objectives This review presents methods for optimizing passive below-knee prosthesis designs to maximize rehabilitation outcomes and how considerations on patient motor performance may enhance these outcomes. Major Findings Available literature supports that considering patient-specific variables pertaining to motor performance permits a multidimensional landscape relating device characteristics and user function, which may yield more accurate predictions of rehabilitation outcomes for individual patients. Moreover, the addition of targeted physical therapeutic interventions that encourage user self-organization may further improve these outcomes. We note the potential of existing paradigms to address these additional dimensions, and we encourage investigators to consider the many different performance objectives available for prosthesis optimization. Conclusions By considering user motor performance in combination with prosthesis mechanical characteristics, a staged optimization approach can be formulated which acknowledges that device modifications may only improve outcomes to a certain extent and user self-organization is a critical component to complete rehabilitation. An iterative process that can be integrated within existing rehabilitative practices accounts for changes in patient status through combined targeted prosthetic solutions and physical therapeutic techniques, and embodies the concept of personalized intervention for patients with lower limb-loss.
Collapse
Affiliation(s)
- Matthew J Major
- Jesse Brown VA Medical Center, Chicago IL, USA.,Northwestern University Prosthetics Orthotics Center, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago IL, USA
| | - Nicholas P Fey
- University of Texas at Dallas, Departments of Bioengineering and Mechanical Engineering, Richardson TX, USA.,UT Southwestern Medical Center, Department of Physical Medicine and Rehabilitation, Dallas TX, USA
| |
Collapse
|
47
|
Vacuum level effects on knee contact force for unilateral transtibial amputees with elevated vacuum suspension. J Biomech 2017; 57:110-116. [PMID: 28476209 DOI: 10.1016/j.jbiomech.2017.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/17/2017] [Accepted: 04/09/2017] [Indexed: 11/22/2022]
Abstract
The elevated vacuum suspension system (EVSS) has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on knee contact force (KCF) is still unclear. The objective of this study was to investigate the effect of vacuum levels on KCF for unilateral transtibial amputees (UTA) using the EVSS. Three-dimensional gait was modeled for 9 UTA with five vacuum levels (0-20inHg [67.73kPa], 5inHg [16.93kPa] increments) and 9 non-amputees based on kinematic and ground reaction force data. The results showed that the vacuum level effects were significant for peak axial KCF, which had a relatively large value at 0 and 20inHg (67.73kPa). The intact limb exhibited a comparable peak axial KCF to the non-amputees at 15inHg (50.79kPa). At moderate vacuum levels (5inHg [16.93kPa] to 15inHg [50.79kPa]), co-contraction of quadriceps and hamstrings at peak axial KCF was similar for the intact limb, but was smaller for the residual limb comparing with the non-amputees. The intact limb showed a similar magnitude of quadriceps and hamstrings force at 15inHg (50.79kPa) to the non-amputees, but the muscle coordination patterns varied between the residual and intact limbs. These findings indicate that a proper vacuum level may partially compensate for the lack of ankle plantarflexor and reduce the knee loading. Of the tested vacuum levels, 15inHg (50.79kPa) appears most favorable, although additional analyses with more amputees are suggested to confirm these results prior to establishing clinical guidelines.
Collapse
|
48
|
Meyer AJ, Eskinazi I, Jackson JN, Rao AV, Patten C, Fregly BJ. Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions. Front Bioeng Biotechnol 2016; 4:77. [PMID: 27790612 PMCID: PMC5061852 DOI: 10.3389/fbioe.2016.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022] Open
Abstract
Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject's self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot-ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject's walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject's walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the subject's walking kinematics and kinetics well for the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait period the most accurately. When used to predict how the subject would walk at 1.1 m/s, synergy controls predicted a gait period close to that estimated from the linear relationship between gait speed and stride length. These findings suggest that our neuromusculoskeletal simulation framework may be able to bridge the gap between patient-specific muscle synergy information and resulting functional capabilities and limitations.
Collapse
Affiliation(s)
- Andrew J Meyer
- Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, FL , USA
| | - Ilan Eskinazi
- Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, FL , USA
| | - Jennifer N Jackson
- Department of Biomedical Engineering, University of Florida , Gainesville, FL , USA
| | - Anil V Rao
- Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, FL , USA
| | - Carolynn Patten
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Neural Control of Movement Lab, Malcom-Randall VA Medical Center, Gainesville, FL, USA
| | - Benjamin J Fregly
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Arch ES, Stanhope SJ, Higginson JS. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription. Prosthet Orthot Int 2016. [PMID: 26209424 DOI: 10.1177/0309364615592693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. OBJECTIVES To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. STUDY DESIGN Dual case study. METHODS The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. RESULTS Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. CONCLUSION These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. CLINICAL RELEVANCE Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis characteristics.
Collapse
|
50
|
Pickle NT, Wilken JM, Aldridge Whitehead JM, Silverman AK. Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses. J Biomech 2016; 49:3397-3406. [PMID: 27670646 DOI: 10.1016/j.jbiomech.2016.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Sloped walking requires altered strategies for maintaining dynamic balance relative to level-ground walking, as evidenced by changes in sagittal-plane whole-body angular momentum (H) in able-bodied individuals. The ankle plantarflexor muscles are critical for regulating H, and functional loss of these muscles from transtibial amputation affects this regulation. However, it is unclear if a powered prosthesis, which more closely emulates intact ankle function than a passive energy-storage-and-return prosthesis, affects H differently during sloped walking. Therefore, our purpose was to investigate H in individuals with unilateral transtibial amputation when using powered and passive prostheses. Overall, the range of H was greater in people with a transtibial amputation relative to able-bodied individuals. On a -10° decline, individuals with amputation did not decrease H as much as able-bodied individuals, and had reduced prosthetic limb braking ground reaction forces and knee power absorption. On a +10° incline, individuals with amputation had a greater relative increase of H than able-bodied individuals, a more anterior placement of the prosthetic foot, and higher peak hip power generation. The powered prosthesis condition resulted in a smaller range of H during prosthetic stance relative to the passive condition, although it was still larger than able-bodied individuals. Our results suggest that prosthetic ankle power generation may help regulate dynamic balance during prosthetic stance, but alone is not sufficient for restoring H to that of able-bodied individuals on slopes. Contributions of knee extensor muscles and the biarticular gastrocnemius in regulating H on slopes should be further investigated.
Collapse
Affiliation(s)
- Nathaniel T Pickle
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jason M Wilken
- Center for the Intrepid, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, JBSA Ft. Sam Houston, TX 78234, USA
| | - Jennifer M Aldridge Whitehead
- Center for the Intrepid, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, JBSA Ft. Sam Houston, TX 78234, USA
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|