1
|
Mao X, Shokef Y. Introduction to force transmission by nonlinear biomaterials. SOFT MATTER 2021; 17:10172-10176. [PMID: 34755159 DOI: 10.1039/d1sm90194j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xiaoming Mao and Yair Shokef introduce the Soft Matter themed collection on force transmission by nonlinear biomaterials.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Yair Shokef
- School of Mechanical Engineering, Sackler Center for Computational Molecular and Materials Science, and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Hervas-Raluy S, Gomez-Benito MJ, Borau-Zamora C, Cóndor M, Garcia-Aznar JM. A new 3D finite element-based approach for computing cell surface tractions assuming nonlinear conditions. PLoS One 2021; 16:e0249018. [PMID: 33852586 PMCID: PMC8046236 DOI: 10.1371/journal.pone.0249018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
Advances in methods for determining the forces exerted by cells while they migrate are essential for attempting to understand important pathological processes, such as cancer or angiogenesis, among others. Precise data from three-dimensional conditions are both difficult to obtain and manipulate. For this purpose, it is critical to develop workflows in which the experiments are closely linked to the subsequent computational postprocessing. The work presented here starts from a traction force microscopy (TFM) experiment carried out on microfluidic chips, and this experiment is automatically joined to an inverse problem solver that allows us to extract the traction forces exerted by the cell from the displacements of fluorescent beads embedded in the extracellular matrix (ECM). Therefore, both the reconstruction of the cell geometry and the recovery of the ECM displacements are used to generate the inputs for the resolution of the inverse problem. The inverse problem is solved iteratively by using the finite element method under the hypothesis of finite deformations and nonlinear material formulation. Finally, after mathematical postprocessing is performed, the traction forces on the surface of the cell in the undeformed configuration are obtained. Therefore, in this work, we demonstrate the robustness of our computational-based methodology by testing it under different conditions in an extreme theoretical load problem and then by applying it to a real case based on experimental results. In summary, we have developed a new procedure that adds value to existing methodologies for solving inverse problems in 3D, mainly by allowing for large deformations and not being restricted to any particular material formulation. In addition, it automatically bridges the gap between experimental images and mechanical computations.
Collapse
Affiliation(s)
- Silvia Hervas-Raluy
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | | | - Carlos Borau-Zamora
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
- University Center for Defense, Zaragoza, Spain
| | - Mar Cóndor
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
3
|
Cóndor M, García-Aznar JM. An iterative finite element-based method for solving inverse problems in traction force microscopy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105056. [PMID: 31542705 DOI: 10.1016/j.cmpb.2019.105056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE During the last years different model solutions were proposed for solving cell forces under different conditions. The solution relies on a deformation field that is obtained under cell relaxation with a chemical cocktail. Once the deformation field of the matrix is determined, cell forces can be computed by an inverse algorithm, given the mechanical properties of the matrix. Most of the Traction Force Microscopy (TFM) methods presented so far relied on a linear stress-strain response of the matrix. However, the mechanical response of some biopolymer networks, such as collagen gels is more complex. In this work, we present a numerical method for solving cell forces on non-linear materials. METHODS The proposed method relies on solving the inverse problem based on an iterative optimization. The objective function is defined by least-square minimization of the difference between the target and the current computed deformed configuration of the cell, and the iterative formulation is based on the solution of several direct mechanical problems. The model presents a well-posed discretized inverse elasticity problem in the absence of regularization. The algorithm can be easily implemented in any kind of Finite Element (FE) code as a sequence of different standard FE analysis. RESULTS To illustrate the proposed iterative formulation we apply the theoretical model to some illustrative examples by using real experimental data of Normal Human Dermal Fibroblast cells (NHDF) migrating inside a 2 mg/ml collagen-based gel. Different examples of application have been simulated to test the inverse numerical model proposed and to investigate the effect of introducing the correct cell properties onto the obtained cell forces. The algorithm converges after a small number of iterations, generating errors of around 5% for the tractions field in the cell contour domain. The resulting maximum traction values increased by 11% as a consequence of doubling the mechanical properties of the cell domain. CONCLUSIONS With the results generated from computations we demonstrate the application of the algorithm and explain how the mechanical properties of both, the cell and the gel, domains are important for arriving to the correct results when using inverse traction force reconstruction algorithms, however, have only a minor effect on the resulting traction values.
Collapse
Affiliation(s)
- M Cóndor
- Aragón Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - J M García-Aznar
- Aragón Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Basoli F, Giannitelli SM, Gori M, Mozetic P, Bonfanti A, Trombetta M, Rainer A. Biomechanical Characterization at the Cell Scale: Present and Prospects. Front Physiol 2018; 9:1449. [PMID: 30498449 PMCID: PMC6249385 DOI: 10.3389/fphys.2018.01449] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico–chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.
Collapse
Affiliation(s)
- Francesco Basoli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Manuele Gori
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Alessandra Bonfanti
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.,Institute for Photonics and Nanotechnologies, National Research Council, Rome, Italy
| |
Collapse
|
5
|
Cóndor M, Steinwachs J, Mark C, García‐Aznar J, Fabry B. Traction Force Microscopy in 3‐Dimensional Extracellular Matrix Networks. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpcb.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M. Cóndor
- Department of Mechanical Engineering, University of Zaragoza Zaragoza Spain
| | - J. Steinwachs
- Department of Physics, University of Erlangen‐Nuremberg Erlangen Germany
| | - C. Mark
- Department of Physics, University of Erlangen‐Nuremberg Erlangen Germany
| | - J.M. García‐Aznar
- Department of Mechanical Engineering, University of Zaragoza Zaragoza Spain
| | - B. Fabry
- Department of Physics, University of Erlangen‐Nuremberg Erlangen Germany
| |
Collapse
|
6
|
Palacio‐Torralba J, Jiménez Aguilar E, Good DW, Hammer S, McNeill SA, Stewart GD, Reuben RL, Chen Y. Patient specific modeling of palpation-based prostate cancer diagnosis: effects of pelvic cavity anatomy and intrabladder pressure. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02734. [PMID: 26190813 PMCID: PMC4975704 DOI: 10.1002/cnm.2734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/20/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Computational modeling has become a successful tool for scientific advances including understanding the behavior of biological and biomedical systems as well as improving clinical practice. In most cases, only general models are used without taking into account patient-specific features. However, patient specificity has proven to be crucial in guiding clinical practice because of disastrous consequences that can arise should the model be inaccurate. This paper proposes a framework for the computational modeling applied to the example of the male pelvic cavity for the purpose of prostate cancer diagnostics using palpation. The effects of patient specific structural features on palpation response are studied in three selected patients with very different pathophysiological conditions whose pelvic cavities are reconstructed from MRI scans. In particular, the role of intrabladder pressure in the outcome of digital rectal examination is investigated with the objective of providing guidelines to practitioners to enhance the effectiveness of diagnosis. Furthermore, the presence of the pelvic bone in the model is assessed to determine the pathophysiological conditions in which it has to be modeled. The conclusions and suggestions of this work have potential use not only in clinical practice and also for biomechanical modeling where structural patient-specificity needs to be considered. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Javier Palacio‐Torralba
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | | | - Daniel W. Good
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalCrewe Road SouthEdinburghEH4 2XUUK
| | - Steven Hammer
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - S. Alan McNeill
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalCrewe Road SouthEdinburghEH4 2XUUK
- Department of Urology, NHS LothianWestern General HospitalCrewe Road SouthEdinburghEH4 2XUUK
| | - Grant D. Stewart
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalCrewe Road SouthEdinburghEH4 2XUUK
- Department of Urology, NHS LothianWestern General HospitalCrewe Road SouthEdinburghEH4 2XUUK
| | - Robert L. Reuben
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Yuhang Chen
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| |
Collapse
|
7
|
Palacio-Torralba J, Hammer S, Good DW, Alan McNeill S, Stewart GD, Reuben RL, Chen Y. Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation. J Mech Behav Biomed Mater 2014; 41:149-60. [PMID: 25460411 DOI: 10.1016/j.jmbbm.2014.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Although palpation has been successfully employed for centuries to assess soft tissue quality, it is a subjective test, and is therefore qualitative and depends on the experience of the practitioner. To reproduce what the medical practitioner feels needs more than a simple quasi-static stiffness measurement. This paper assesses the capacity of dynamic mechanical palpation to measure the changes in viscoelastic properties that soft tissue can exhibit under certain pathological conditions. A diagnostic framework is proposed to measure elastic and viscous behaviors simultaneously using a reduced set of viscoelastic parameters, giving a reliable index for quantitative assessment of tissue quality. The approach is illustrated on prostate models reconstructed from prostate MRI scans. The examples show that the change in viscoelastic time constant between healthy and cancerous tissue is a key index for quantitative diagnostics using point probing. The method is not limited to any particular tissue or material and is therefore useful for tissue where defining a unique time constant is not trivial. The proposed framework of quantitative assessment could become a useful tool in clinical diagnostics for soft tissue.
Collapse
Affiliation(s)
- Javier Palacio-Torralba
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Steven Hammer
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Daniel W Good
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - S Alan McNeill
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Department of Urology, NHS Lothian, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Grant D Stewart
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Department of Urology, NHS Lothian, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Robert L Reuben
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Yuhang Chen
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
8
|
Jorge-Peñas A, Muñoz-Barrutia A, de-Juan-Pardo EM, Ortiz-de-Solorzano C. Validation tool for traction force microscopy. Comput Methods Biomech Biomed Engin 2014; 18:1377-85. [PMID: 24697293 DOI: 10.1080/10255842.2014.903934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Traction force microscopy (TFM) is commonly used to estimate cells' traction forces from the deformation that they cause on their substrate. The accuracy of TFM highly depends on the computational methods used to measure the deformation of the substrate and estimate the forces, and also on the specifics of the experimental set-up. Computer simulations can be used to evaluate the effect of both the computational methods and the experimental set-up without the need to perform numerous experiments. Here, we present one such TFM simulator that addresses several limitations of the existing ones. As a proof of principle, we recreate a TFM experimental set-up, and apply a classic 2D TFM algorithm to recover the forces. In summary, our simulator provides a valuable tool to study the performance, refine experimentally, and guide the extraction of biological conclusions from TFM experiments.
Collapse
Affiliation(s)
- A Jorge-Peñas
- a Tissue Engineering and Biomaterials Unit, CEIT and TECNUN, University of Navarra , San Sebastian , Spain
| | | | | | | |
Collapse
|