1
|
Huang L, Wu P, Wang Y, Song Y, Li Y. Pore-scale deformation characteristics of hydrate-bearing sediments with gas replacement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176464. [PMID: 39317260 DOI: 10.1016/j.scitotenv.2024.176464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Gas replacement method enables the simultaneous exploitation of natural gas and the realization of carbon capture, utilization, and storage (CCUS). Safe exploitation of hydrate-bearing sediments (HBS) has garnered significant attention, particularly concerning the engineering geological risks involved. Understanding deformation characteristics during shear after the replacement of HBS is crucial for safe and efficient exploitation. This study employs microfocus computer tomography and digital volume correlation (DVC) to investigate the deformation characteristics of HBS samples with varying replacement percentages. Key findings include: 1. An increase in failure strength of HBS is observed with higher replacement percentages due to improved hydrate cementation and consolidation under confining pressure. 2. DVC analysis shows that narrower radial displacement ranges are associated with increased pore compression, while wider ranges indicate greater particle repositioning. Frequent large axial displacements suggest significant pore compaction, whereas smaller axial displacements indicate particle movement and pore-filling phenomena. 3. The gas replacement process enhances the cementation structure of HBS without altering hydrate saturation, resulting in thinner shear bands and accelerated strain softening with higher replacement percentages. 4. The DVC approach effectively captures volumetric strain and deformation behaviors, offering valuable insights into sediment responses under shear. This study provides a theoretical reference for geological safety evaluation during gas replacement exploitation.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, PR China
| | - Peng Wu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, PR China.
| | - Yunhui Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, PR China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, PR China
| | - Yanghui Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
2
|
Measurement of bone damage caused by quasi-static compressive loading-unloading to explore dental implants stability: Simultaneous use of in-vitro tests, μ-CT images, and digital volume correlation. J Mech Behav Biomed Mater 2023; 138:105566. [PMID: 36435034 DOI: 10.1016/j.jmbbm.2022.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Primary stability of dental implants is the initial mechanical engagement of the implant with its adjacent bone. Implantation and the subsequent loading may cause mechanical damage in the peripheral bone, which ultimately reduces the stability of the implant. This study aimed at evaluating primary stability of dental implants through applying stepwise compressive displacement-controlled, loading-unloading cycles to obtain overall stiffness and dissipated energy of the bone-implant structure; and quantifying induced plastic strains in surrounding bone using digital volume correlation (DVC) method, through comparing μCT images in different loading steps. To this end, dental implants were inserted into the cylindrical trabecular bones, then the bone-implant structure was undergone step-wise loading-unloading cycles, and μCT images were taken in some particular steps, then comparison was made between undeformed and deformed configurations using DVC to quantify plastic strain within the trabecular bone. Comparing stiffness reduction and dissipated energy values in different loading steps, obtained from the force-displacement curve in each loading step, revealed that the maximum displacement of 0.16 mm can be deemed as a safe threshold above which damages in peri-implant bone started to increase considerably (p < 0.05). In addition, it was found here that peri-implant bone strain linearly increased with decreasing bone-implant stiffness (p < 0.05). Moreover, strain concentration in peri-implant bone region showed that the plastic strain in trabecular bone spread up to a distance of about 2.5 mm away from the implant surface. Research of this kind can be used to optimize the design of dental implants, with the ultimate goal of improving their stability, also to validate in-silico models, e.g., micro-finite element models, which can help gain a deeper understanding of bone-implant construct behavior.
Collapse
|
3
|
Karali A, Dall'Ara E, Zekonyte J, Kao AP, Blunn G, Tozzi G. Effect of radiation-induced damage of trabecular bone tissue evaluated using indentation and digital volume correlation. J Mech Behav Biomed Mater 2023; 138:105636. [PMID: 36608532 DOI: 10.1016/j.jmbbm.2022.105636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Exposure to X-ray radiation for an extended amount of time can cause damage to the bone tissue and therefore affect its mechanical properties. Specifically, high-resolution X-ray Computed Tomography (XCT), in both synchrotron and lab-based systems, has been employed extensively for evaluating bone micro-to-nano architecture. However, to date, it is still unclear how long exposures to X-ray radiation affect the mechanical properties of trabecular bone, particularly in relation to lab-XCT systems. Indentation has been widely used to identify local mechanical properties such as hardness and elastic modulus of bone and other biological tissues. The purpose of this study is therefore, to use indentation and XCT-based investigative tools such as digital volume correlation (DVC) to assess the microdamage induced by long exposure of trabecular bone tissue to X-ray radiation and how this affects its local mechanical properties. Trabecular bone specimens were indented before and after X-ray exposures of 33 and 66 h, where variation of elastic modulus was evaluated at every stage. The resulting elastic modulus was decreased, and micro-cracks appeared in the specimens after the first long X-ray exposure and crack formation increased after the second exposure. High strain concentration around the damaged tissue exceeding 1% was also observed from DVC analysis. The outcomes of this study show the importance of designing appropriate XCT-based experiments in lab systems to avoid degradation of the bone tissue mechanical properties due to radiation and these results will help to inform future studies that require long X-ray exposure for in situ experiments or generation of reliable subject-specific computational models.
Collapse
Affiliation(s)
- Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| | - Enrico Dall'Ara
- Departement of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Alexander P Kao
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Gianluca Tozzi
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
4
|
Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: A mechanistic study. Bioact Mater 2023; 19:406-417. [PMID: 35574056 PMCID: PMC9062748 DOI: 10.1016/j.bioactmat.2022.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
The successful application of magnesium (Mg) alloys as biodegradable bone substitutes for critical-sized defects may be comprised by their high degradation rate resulting in a loss of mechanical integrity. This study investigates the degradation pattern of an open-porous fluoride-coated Mg-based scaffold immersed in circulating Hanks' Balanced Salt Solution (HBSS) with and without in situ cyclic compression (30 N/1 Hz). The changes in morphological and mechanical properties have been studied by combining in situ high-resolution X-ray computed tomography mechanics and digital volume correlation. Although in situ cyclic compression induced acceleration of the corrosion rate, probably due to local disruption of the coating layer where fatigue microcracks were formed, no critical failures in the overall scaffold were observed, indicating that the mechanical integrity of the Mg scaffolds was preserved. Structural changes, due to the accumulation of corrosion debris between the scaffold fibres, resulted in a significant increase (p < 0.05) in the material volume fraction from 0.52 ± 0.07 to 0.47 ± 0.03 after 14 days of corrosion. However, despite an increase in fibre material loss, the accumulated corrosion products appear to have led to an increase in Young's modulus after 14 days as well as lower third principal strain (εp3) accumulation (−91000 ± 6361 με and −60093 ± 2414 με after 2 and 14 days, respectively). Therefore, this innovative Mg scaffold design and composition provide a bone replacement, capable of sustaining mechanical loads in situ during the postoperative phase allowing new bone formation to be initially supported as the scaffold resorbs. First report on in vitro cyclic loading of MgF2 coated open-porous Mg scaffolds in HBSS simulating 2–3 months in humans. Fluoride-coating slows down corrosion under cyclic loading in vitro. Entangled scaffold structure accumulates local corrosion debris which keeps the mechanical integrity over 14 days in vitro.
Collapse
|
5
|
Dall'Ara E, Bodey AJ, Isaksson H, Tozzi G. A practical guide for in situ mechanical testing of musculoskeletal tissues using synchrotron tomography. J Mech Behav Biomed Mater 2022; 133:105297. [PMID: 35691205 DOI: 10.1016/j.jmbbm.2022.105297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Musculoskeletal tissues are complex hierarchical materials where mechanical response is linked to structural and material properties at different dimensional levels. Therefore, high-resolution three-dimensional tomography is very useful for assessing tissue properties at different scales. In particular, Synchrotron Radiation micro-Computed Tomography (SR-microCT) has been used in several applications to analyze the structure of bone and biomaterials. In the past decade the development of digital volume correlation (DVC) algorithms applied to SR-microCT images and its combination with in situ mechanical testing (four-dimensional imaging) have allowed researchers to visualise, for the first time, the deformation of musculoskeletal tissues and their interaction with biomaterials under different loading scenarios. However, there are several experimental challenges that make these measurements difficult and at high risk of failure. Challenges relate to sample preparation, imaging parameters, loading setup, accumulated tissue damage for multiple tomographic acquisitions, reconstruction methods and data processing. Considering that access to SR-microCT facilities is usually associated with bidding processes and long waiting times, the failure of these experiments could notably slow down the advancement of this research area and reduce its impact. Many of the experimental failures can be avoided with increased experience in performing the tests and better guidelines for preparation and execution of these complex experiments; publication of negative results could help interested researchers to avoid recurring mistakes. Therefore, the goal of this article is to highlight the potential and pitfalls in the design and execution of in situ SR-microCT experiments, involving multiple scans, of musculoskeletal tissues for the assessment of their structural and/or mechanical properties. The advice and guidelines that follow should improve the success rate of this type of experiment, allowing the community to reach higher impact more efficiently.
Collapse
Affiliation(s)
- E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK.
| | | | - H Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - G Tozzi
- School of Engineering, London South Bank University, London, UK
| |
Collapse
|
6
|
Dall'Ara E, Tozzi G. Digital volume correlation for the characterization of musculoskeletal tissues: Current challenges and future developments. Front Bioeng Biotechnol 2022; 10:1010056. [PMID: 36267445 PMCID: PMC9577231 DOI: 10.3389/fbioe.2022.1010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Biological tissues are complex hierarchical materials, difficult to characterise due to the challenges associated to the separation of scale and heterogeneity of the mechanical properties at different dimensional levels. The Digital Volume Correlation approach is the only image-based experimental approach that can accurately measure internal strain field within biological tissues under complex loading scenarios. In this minireview examples of DVC applications to study the deformation of musculoskeletal tissues at different dimensional scales are reported, highlighting the potential and challenges of this relatively new technique. The manuscript aims at reporting the wide breath of DVC applications in the past 2 decades and discuss future perspective for this unique technique, including fast analysis, applications on soft tissues, high precision approaches, and clinical applications.
Collapse
Affiliation(s)
- Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gianluca Tozzi
- School of Engineering, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
7
|
Bonithon R, Kao AP, Fernández MP, Dunlop JN, Blunn GW, Witte F, Tozzi G. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomater 2021; 127:338-352. [PMID: 33831571 DOI: 10.1016/j.actbio.2021.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg) and its alloys are very promising degradable, osteoconductive and osteopromotive materials to be used as regenerative treatment for critical-sized bone defects. Under load-bearing conditions, Mg alloys must display sufficient morphological and mechanical resemblance to the native bone they are meant to replace to provide adequate support and enable initial bone bridging. In this study, unique highly open-porous Mg-based scaffolds were mechanically and morphologically characterised at different scales. In situ X-ray computed tomography (XCT) mechanics, digital volume correlation (DVC), electron microscopy and nanoindentation were combined to assess the influence of material properties on the apparent (macro) mechanics of the scaffold. The results showed that Mg exhibited a higher connected structure (38.4mm-3 and 6.2mm-3 for Mg and trabecular bone (Tb), respectively) and smaller spacing (245µm and 629µm for Mg and Tb, respectively) while keeping an overall appropriate porosity of 55% in the range of trabecular bone (30-80%). This fully connected and highly porous structure promoted lower local strain compared to the trabecular bone structure at material level (i.e. -22067 ± 8409µε and -40120 ± 18364µε at 6% compression for Mg and trabecular bone, respectively) and highly ductile mechanical behaviour at apparent level preventing premature scaffold failure. Furthermore, the Mg scaffolds exceeded the physiological strain of bone tissue generated in daily activities such as walking or running (500-2000µε) by one order of magnitude. The yield stress was also found to be close to trabecular bone (2.06MPa and 6.67MPa for Mg and Tb, respectively). Based on this evidence, the study highlights the overall biomechanical suitability of an innovative Mg-based scaffold design to be used as a treatment for bone critical-sized defects. STATEMENT OF SIGNIFICANCE: Bone regeneration remains a challenging field of research where different materials and solutions are investigated. Among the variety of treatments, biodegradable magnesium-based implants represent a very promising possibility. The novelty of this study is based on the characterisation of innovative magnesium-based implants whose structure and manufacturing have been optimised to enable the preservation of mechanical integrity and resemble bone microarchitecture. It is also based on a multi-scale approach by coupling high-resolution X-ray computed tomography (XCT), with in situ mechanics, digital volume correlation (DVC) as well as nano-indentation and electron-based microscopy imaging to define how degradable porous Mg-based implants fulfil morphological and mechanical requirements to be used as critical bone defects regeneration treatment.
Collapse
|
8
|
Peña Fernández M, Kao AP, Witte F, Arora H, Tozzi G. Low-cycle full-field residual strains in cortical bone and their influence on tissue fracture evaluated via in situ stepwise and continuous X-ray computed tomography. J Biomech 2020; 113:110105. [DOI: 10.1016/j.jbiomech.2020.110105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023]
|
9
|
Measurement of Internal Implantation Strains in Analogue Bone Using DVC. MATERIALS 2020; 13:ma13184050. [PMID: 32932608 PMCID: PMC7559792 DOI: 10.3390/ma13184050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
The survivorship of cementless orthopaedic implants may be related to their initial stability; insufficient press-fit can lead to excessive micromotion between the implant and bone, joint pain, and surgical revision. However, too much interference between implant and bone can produce excessive strains and damage the bone, which also compromises stability. An understanding of the nature and mechanisms of strain generation during implantation would therefore be valuable. Previous measurements of implantation strain have been limited to local discrete or surface measurements. In this work, we devise a Digital Volume Correlation (DVC) methodology to measure the implantation strain throughout the volume. A simplified implant model was implanted into analogue bone media using a customised loading rig, and a micro-CT protocol optimised to minimise artefacts due to the presence of the implant. The measured strains were interpreted by FE modelling of the displacement-controlled implantation, using a bilinear elastoplastic constitutive model for the analogue bone. The coefficient of friction between the implant and bone was determined using the experimental measurements of the reaction force. Large strains at the interface between the analogue bone and implant produced localised deterioration of the correlation coefficient, compromising the ability to measure strains in this region. Following correlation coefficient thresholding (removing strains with a coefficient less than 0.9), the observed strain patterns were similar between the DVC and FE. However, the magnitude of FE strains was approximately double those measured experimentally. This difference suggests the need for improvements in the interface failure model, for example, to account for localised buckling of the cellular analogue bone structure. A further recommendation from this work is that future DVC experiments involving similar geometries and structures should employ a subvolume size of 0.97 mm as a starting point.
Collapse
|
10
|
Turunen MJ, Le Cann S, Tudisco E, Lovric G, Patera A, Hall SA, Isaksson H. Sub-trabecular strain evolution in human trabecular bone. Sci Rep 2020; 10:13788. [PMID: 32796859 PMCID: PMC7429852 DOI: 10.1038/s41598-020-69850-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
To comprehend the most detrimental characteristics behind bone fractures, it is key to understand the material and tissue level strain limits and their relation to failure sites. The aim of this study was to investigate the three-dimensional strain distribution and its evolution during loading at the sub-trabecular level in trabecular bone tissue. Human cadaver trabecular bone samples were compressed in situ until failure, while imaging with high-resolution synchrotron radiation X-ray tomography. Digital volume correlation was used to determine the strains inside the trabeculae. Regions without emerging damage were compared to those about to crack. Local strains in close vicinity of developing cracks were higher than previously reported for a whole trabecular structure and similar to those reported for single isolated trabeculae. Early literature on bone fracture strain thresholds at the tissue level seem to underestimate the maximum strain magnitudes in trabecular bone. Furthermore, we found lower strain levels and a reduced ability to capture detailed crack-paths with increased image voxel size. This highlights the dependence between the observed strain levels and the voxel size and that high-resolution is needed to investigate behavior of individual trabeculae. Furthermore, low trabecular thickness appears to be one predictor of developing cracks. In summary, this study investigated the local strains in whole trabecular structure at sub-trabecular resolution in human bone and confirmed the high strain magnitudes reported for single trabeculae under loading and, importantly extends its translation to the whole trabecular structure.
Collapse
Affiliation(s)
- Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Box 1627, 70211, Kuopio, Finland. .,Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Goran Lovric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.,Centre D'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden.,Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Tozzi G, Peña Fernández M, Davis S, Karali A, Kao AP, Blunn G. Full-Field Strain Uncertainties and Residuals at the Cartilage-Bone Interface in Unstained Tissues Using Propagation-Based Phase-Contrast XCT and Digital Volume Correlation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2579. [PMID: 32516970 PMCID: PMC7321571 DOI: 10.3390/ma13112579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023]
Abstract
A deeper understanding of the cartilage-bone mechanics is fundamental to unravel onset and progression of osteoarthritis, enabling better diagnosis and treatment. The aim of this study is therefore to explore the capability of X-ray computed (XCT) phase-contrast imaging in a lab-based system to enable digital volume correlation (DVC) measurements of unstained cartilage-bone plugs from healthy adult bovines. DVC strain uncertainties were computed for both articular cartilage and mineralized tissue (calcified cartilage and subchondral bone) in the specimens at increasing propagation distances, ranging from absorption up to four times (4× such effective distance. In addition, a process of dehydration and rehydration was proposed to improve feature recognition in XCT of articular cartilage and mechanical properties of this tissue during the process were assessed via micromechanical probing (indentation), which was also used to determine the effect of long X-ray exposure. Finally, full-field strain from DVC was computed to quantify residual strain distribution at the cartilage-bone interface following unconfined compression test (ex situ). It was found that enhanced gray-scale feature recognition at the cartilage-bone interface was achieved using phase-contrast, resulting in reduced DVC strain uncertainties compared to absorption. Residual strains up to ~7000 µε in the articular cartilage were transferred to subchondral bone via the calcified cartilage and micromechanics revealed the predominant effect of long phase-contrast X-ray exposure in reducing both stiffness and hardness of the articular cartilage. The results of this study will pave the way for further development and refinement of the techniques, improving XCT-based strain measurements in cartilage-bone and other soft-hard tissue interfaces.
Collapse
Affiliation(s)
- Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (M.P.F.); (A.K.); (A.P.K.)
| | - Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (M.P.F.); (A.K.); (A.P.K.)
- School of Engineering Sciences, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (S.D.); (G.B.)
| | - Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (M.P.F.); (A.K.); (A.P.K.)
| | - Alexander Peter Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (M.P.F.); (A.K.); (A.P.K.)
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (S.D.); (G.B.)
| |
Collapse
|
12
|
Hesse L, Bunk K, Leupold J, Speck T, Masselter T. Structural and functional imaging of large and opaque plant specimens. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3659-3678. [PMID: 31188449 DOI: 10.1093/jxb/erz186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Three- and four-dimensional imaging techniques are a prerequisite for spatially resolving the form-structure-function relationships in plants. However, choosing the right imaging method is a difficult and time-consuming process as the imaging principles, advantages and limitations, as well as the appropriate fields of application first need to be compared. The present study aims to provide an overview of three imaging methods that allow for imaging opaque, large and thick (>5 mm, up to several centimeters), hierarchically organized plant samples that can have complex geometries. We compare light microscopy of serial thin sections followed by 3D reconstruction (LMTS3D) as an optical imaging technique, micro-computed tomography (µ-CT) based on ionizing radiation, and magnetic resonance imaging (MRI) which uses the natural magnetic properties of a sample for image acquisition. We discuss the most important imaging principles, advantages, and limitations, and suggest fields of application for each imaging technique (LMTS, µ-CT, and MRI) with regard to static (at a given time; 3D) and dynamic (at different time points; quasi 4D) structural and functional plant imaging.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Katharina Bunk
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
| | - Tom Masselter
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| |
Collapse
|
13
|
Peña Fernández M, Dall’Ara E, Bodey AJ, Parwani R, Barber AH, Blunn GW, Tozzi G. Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model. ACS Biomater Sci Eng 2019; 5:2543-2554. [DOI: 10.1021/acsbiomaterials.8b01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| | - Andrew J. Bodey
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE, U.K
| | - Rachna Parwani
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Asa H. Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, U.K
| | - Gordon W. Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, PO1 2DT, U.K
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| |
Collapse
|
14
|
Peña Fernández M, Cipiccia S, Dall'Ara E, Bodey AJ, Parwani R, Pani M, Blunn GW, Barber AH, Tozzi G. Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. J Mech Behav Biomed Mater 2018; 88:109-119. [PMID: 30165258 DOI: 10.1016/j.jmbbm.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
The use of synchrotron radiation micro-computed tomography (SR-microCT) is becoming increasingly popular for studying the relationship between microstructure and bone mechanics subjected to in situ mechanical testing. However, it is well known that the effect of SR X-ray radiation can considerably alter the mechanical properties of bone tissue. Digital volume correlation (DVC) has been extensively used to compute full-field strain distributions in bone specimens subjected to step-wise mechanical loading, but tissue damage from sequential SR-microCT scans has not been previously addressed. Therefore, the aim of this study is to examine the influence of SR irradiation-induced microdamage on the apparent elastic properties of trabecular bone using DVC applied to in situ SR-microCT tomograms obtained with different exposure times. Results showed how DVC was able to identify high local strain levels (> 10,000 µε) corresponding to visible microcracks at high irradiation doses (~ 230 kGy), despite the apparent elastic properties remained unaltered. Microcracks were not detected and bone plasticity was preserved for low irradiation doses (~ 33 kGy), although image quality and consequently, DVC performance were reduced. DVC results suggested some local deterioration of tissue that might have resulted from mechanical strain concentration further enhanced by some level of local irradiation even for low accumulated dose.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | | | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute For in Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Rachna Parwani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Martino Pani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Asa H Barber
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK; School of Engineering, London South Bank University, London, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
15
|
PEÑA FERNÁNDEZ M, BARBER A, BLUNN G, TOZZI G. Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. J Microsc 2018; 272:213-228. [DOI: 10.1111/jmi.12745] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | - A.H. BARBER
- School of Engineering; University of Portsmouth; Portsmouth U.K
- School of Engineering; London South Bank University; U.K
| | - G.W. BLUNN
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth U.K
| | - G. TOZZI
- School of Engineering; University of Portsmouth; Portsmouth U.K
| |
Collapse
|
16
|
Tozzi G, Dall’Ara E, Palanca M, Curto M, Innocente F, Cristofolini L. Strain uncertainties from two digital volume correlation approaches in prophylactically augmented vertebrae: Local analysis on bone and cement-bone microstructures. J Mech Behav Biomed Mater 2017; 67:117-126. [DOI: 10.1016/j.jmbbm.2016.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
17
|
Danesi V, Tozzi G, Cristofolini L. Application of digital volume correlation to study the efficacy of prophylactic vertebral augmentation. Clin Biomech (Bristol, Avon) 2016; 39:14-24. [PMID: 27631716 DOI: 10.1016/j.clinbiomech.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prophylactic augmentation is meant to reinforce the vertebral body, but in some cases it is suspected to actually weaken it. Past studies only investigated structural failure and the surface strain distribution. To elucidate the failure mechanism of the augmented vertebra, more information is needed about the internal strain distribution. This study aims to measure, for the first time, the full-field three-dimensional strain distribution inside augmented vertebrae in the elastic regime and to failure. METHODS Eight porcine vertebrae were prophylactically-augmented using two augmentation materials. They were scanned with a micro-computed tomography scanner (38.8μm voxel resolution) while undeformed, and loaded at 5%, 10%, and 15% compressions. Internal strains (axial, antero-posterior and lateral-lateral components) were computed using digital volume correlation. FINDINGS For both augmentation materials, the highest strains were measured in the regions adjacent to the injected cement mass, whereas the cement-interdigitated-bone was less strained. While this was already visible in the elastic regime (5%), it was a predictor of the localization of failure, which became visible at higher degrees of compression (10% and 15%), when failure propagated across the trabecular bone. Localization of high strains and failure was consistent between specimens, but different between the cement types. INTERPRETATION This study indicated the potential of digital volume correlation in measuring the internal strain (elastic regime) and failure in augmented vertebrae. While the cement-interdigitated region becomes stiffer (less strained), the adjacent non-augmented trabecular bone is affected by the stress concentration induced by the cement mass. This approach can help establish better criteria to improve vertebroplasty.
Collapse
Affiliation(s)
- Valentina Danesi
- Department of Industrial Engineering, Alma Mater Studiorum, Università di Bologna, Italy
| | - Gianluca Tozzi
- School of Engineering, University of Portsmouth, United Kingdom.
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum, Università di Bologna, Italy
| |
Collapse
|
18
|
Miller MA, Goodheart JR, Khechen B, Janssen D, Mann KA. Changes in microgaps, micromotion, and trabecular strain from interlocked cement-trabecular bone interfaces in total knee replacements with in vivo service. J Orthop Res 2016; 34:1019-25. [PMID: 26595084 PMCID: PMC4877298 DOI: 10.1002/jor.23109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/20/2015] [Indexed: 02/04/2023]
Abstract
The initial fixation of cemented Total Knee Replacements (TKRs) relies on mechanical interlock between cement and bone, but loss of interlock occurs with in vivo service. In this study, cement-trabeculae gap morphology and micromechanics were measured for lab prepared (representing post-operative state) and postmortem retrieval (with in vivo remodeling) TKRs to determine how changes in fixation affect local micromechanics. Small specimens taken from beneath the tibial tray were loaded with 1 MPa axial compression and the local micromechanics of the trabeculae-cement interface was quantified using digital image correlation. Lab prepared trabeculae that initially interlock with cement had small gaps (ave:14 μm) and limited micromotion (ave:1 μm) which were larger near the cement border. Trabecular resorption was prevalent following in vivo service; interface gaps became larger (ave:40 μm) and micromotion increased (ave:6 μm), particularly near the cement border. Interlocked trabeculae from lab prepared specimens exhibited strains that were 20% of the supporting bone strain, indicating the trabeculae were initially strain shielded. The spatial and temporal progression of gaps, micromotion, and bone strain was complex and much more variable for post-mortem retrievals compared to the lab prepared specimens. From a clinical perspective, attaining more initial interlock results in cement-bone interfaces that are better fixed with less micromotion. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1019-1025, 2016.
Collapse
Affiliation(s)
- Mark A. Miller
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Jacklyn R. Goodheart
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Benjamin Khechen
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Dennis Janssen
- Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kenneth A. Mann
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, New York, 13210, USA
| |
Collapse
|
19
|
Srinivasan P, Miller MA, Verdonschot N, Mann KA, Janssen D. Experimental and computational micromechanics at the tibial cement-trabeculae interface. J Biomech 2016; 49:1641-1648. [PMID: 27079621 DOI: 10.1016/j.jbiomech.2016.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/11/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023]
Abstract
Aseptic loosening of the tibial component in cemented total knee arthroplasty remains a major concern. We hypothesize that micromotion between the cement and trabeculae leads to increased circulation of interstitial fluid which in turn causes fluid-induced resorption of the trabeculae. Another mechanism for implant loosening is trabecular strain shielding. Using a newly developed experimental setup and digital image correlation (DIC) methods we were able to measure micromotion and strains in lab-prepared cement-trabeculae interface specimens (n=4). Finite element (FE) models of these specimens were developed to determine whether differences in micromotion and strain in morphologically varying specimens could be simulated accurately. Results showed that the measured micromotion and strains correlated well with FE model predictions (r(2)=0.59-0.85; r(2)=0.66-0.90). Global specimen strains measured axially matched well with the FE model strains (r(2)=0.87). FE model cement strains showed an increasing trend with distance from the cement border. The influence of loss of trabecular connectivity at the specimen edges was studied using our FE model results. Micromotion values at the outer edge of the specimens were higher than the specimen interior when considering a very thin outer edge (0.1mm). When the outer edge thickness was increased to about one trabecular length (0.8mm), there was a drop in the median and peak values. Using the experimental and modelling approach outlined in this study, we can further study the mechanisms that lead to loss of interlock between cement and trabeculae at the tibial interface.
Collapse
Affiliation(s)
- Priyanka Srinivasan
- Radboud university medical center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, Nijmegen, The Netherlands.
| | - Mark A Miller
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nico Verdonschot
- Radboud university medical center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, Nijmegen, The Netherlands; University of Twente, Laboratory for Biomechanical Engineering, Faculty of Engineering Technology, Enschede, The Netherlands
| | - Kenneth A Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dennis Janssen
- Radboud university medical center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Zhu ML, Zhang QH, Lupton C, Tong J. Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation. J Mech Behav Biomed Mater 2015; 57:269-79. [PMID: 26741534 DOI: 10.1016/j.jmbbm.2015.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
The measurement uncertainty of strains has been assessed in a bone analogue (sawbone), bovine trabecular bone and bone-cement interface specimens under zero load using the Digital Volume Correlation (DVC) method. The effects of sub-volume size, sample constraint and preload on the measured strain uncertainty have been examined. There is generally a trade-off between the measurement uncertainty and the spatial resolution. Suitable sub-volume sizes have been be selected based on a compromise between the measurement uncertainty and the spatial resolution of the cases considered. A ratio of sub-volume size to a microstructure characteristic (Tb.Sp) was introduced to reflect a suitable spatial resolution, and the measurement uncertainty associated was assessed. Specifically, ratios between 1.6 and 4 appear to give rise to standard deviations in the measured strains between 166 and 620 με in all the cases considered, which would seem to suffice for strain analysis in pre as well as post yield loading regimes. A microscale finite element (μFE) model was built from the CT images of the sawbone, and the results from the μFE model and a continuum FE model were compared with those from the DVC. The strain results were found to differ significantly between the two methods at tissue level, consistent in trend with the results found in human bones, indicating mainly a limitation of the current DVC method in mapping strains at this level.
Collapse
Affiliation(s)
- Ming-Liang Zhu
- Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; Key Laboratory of Pressure Systems and Safety, Ministry of Education; School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qing-Hang Zhang
- Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Colin Lupton
- Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Jie Tong
- Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK.
| |
Collapse
|
21
|
Palanca M, Tozzi G, Cristofolini L. The use of digital image correlation in the biomechanical area: a review. Int Biomech 2015. [DOI: 10.1080/23335432.2015.1117395] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Marco Palanca
- School of Engineering and Architecture, University of Bologna, Bologna, Italy
| | - Gianluca Tozzi
- School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Luca Cristofolini
- School of Engineering and Architecture, Department of Industrial Engineering, University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Palanca M, Tozzi G, Cristofolini L, Viceconti M, Dall'Ara E. Three-Dimensional Local Measurements of Bone Strain and Displacement: Comparison of Three Digital Volume Correlation Approaches. J Biomech Eng 2015; 137:2212352. [DOI: 10.1115/1.4030174] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 11/08/2022]
Abstract
Different digital volume correlation (DVC) approaches are currently available or under development for bone tissue micromechanics. The aim of this study was to compare accuracy and precision errors of three DVC approaches for a particular three-dimensional (3D) zero-strain condition. Trabecular and cortical bone specimens were repeatedly scanned with a micro-computed tomography (CT). The errors affecting computed displacements and strains were extracted for a known virtual translation, as well as for repeated scans. Three DVC strategies were tested: two local approaches, based on fast-Fourier-transform (DaVis-FFT) or direct-correlation (DaVis-DC), and a global approach based on elastic registration and a finite element (FE) solver (ShIRT-FE). Different computation subvolume sizes were tested. Much larger errors were found for the repeated scans than for the virtual translation test. For each algorithm, errors decreased asymptotically for larger subvolume sizes in the range explored. Considering this particular set of images, ShIRT-FE showed an overall better accuracy and precision (a few hundreds microstrain for a subvolume of 50 voxels). When the largest subvolume (50–52 voxels) was applied to cortical bone, the accuracy error obtained for repeated scans with ShIRT-FE was approximately half of that for the best local approach (DaVis-DC). The difference was lower (250 microstrain) in the case of trabecular bone. In terms of precision, the errors shown by DaVis-DC were closer to the ones computed by ShIRT-FE (differences of 131 microstrain and 157 microstrain for cortical and trabecular bone, respectively). The multipass computation available for DaVis software improved the accuracy and precision only for the DaVis-FFT in the virtual translation, particularly for trabecular bone. The better accuracy and precision of ShIRT-FE, followed by DaVis-DC, were obtained with a higher computational cost when compared to DaVis-FFT. The results underline the importance of performing a quantitative comparison of DVC methods on the same set of samples by using also repeated scans, other than virtual translation tests only. ShIRT-FE provides the most accurate and precise results for this set of images. However, both DaVis approaches show reasonable results for large nodal spacing, particularly for trabecular bone. Finally, this study highlights the importance of using sufficiently large subvolumes, in order to achieve better accuracy and precision.
Collapse
Affiliation(s)
- Marco Palanca
- School of Engineering and Architecture, University of Bologna, Via Terracini 28, Bologna 40131, Italy e-mail:
| | - Gianluca Tozzi
- School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ, UK e-mail:
| | - Luca Cristofolini
- School of Engineering and Architecture, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy e-mail:
| | - Marco Viceconti
- Department of Mechanical Engineering and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sir Frederick Mappin Building, Pam Liversidge Building, Sheffield S1 3JD, UK e-mail:
| | - Enrico Dall'Ara
- Department of Mechanical Engineering and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sir Frederick Mappin Building, Pam Liversidge Building, Sheffield S1 3JD, UK e-mail:
| |
Collapse
|