1
|
Tanaka T, Hase K, Mori K, Wakida M, Arima Y, Kubo T, Taguchi M. Stair-descent phenotypes in community-dwelling older adults determined using high-level balance tasks. Aging Clin Exp Res 2025; 37:34. [PMID: 39878920 PMCID: PMC11779766 DOI: 10.1007/s40520-025-02929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Falls on stairs are a major cause of severe injuries among older adults, with stair descent posing significantly greater risks than ascent. Variations in stair descent phenotypes may reflect differences in physical function and biomechanical stability, and their identification may prevent falls. AIMS This study aims to classify stair descent phenotypes in older adults and investigate the biomechanical and physical functional differences between these phenotypes using hierarchical cluster analysis. METHODS Eighty-two older adults participated in this study. Stair descent was measured using a three-dimensional motion analysis system. Physical function was assessed using measures of muscle strength, walking speed, the Timed Up and Go Test (TUG), and the Community Balance and Mobility Scale (CB&M). RESULTS Hierarchical cluster analysis was performed on kinematic data obtained during stair descent. Three phenotypes were identified: neutral (N-type; 24%), extension (E-type; 52%), and rotation (R-type; 23%). There were no significant differences in lower limb muscle strength or walking speed among the different types, and TUG scores showed no differences in terms of mobility or balance abilities. However, CB&M scores were significantly lower for E-type and R-type compared to N-type. Sub-analyses revealed that while there were no differences in the mobility factor of CB&M between E-type and R-type, the strength factors were significantly lower compared to those for N-type. DISCUSSION These results suggest that E-type and R-type stair-descent patterns may be influenced by declines in standing balance ability and muscle strength. CONCLUSIONS These findings may inform fall-prevention training programs related to stair descent among older adults.
Collapse
Affiliation(s)
- Takahiro Tanaka
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Osaka, Japan.
- Department of Physical Therapy, Aino University, 4-5-4 Higashioda, Ibaraki, Osaka, 567-0012, Japan.
| | - Kimitaka Hase
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Osaka, Japan
- Department of Rehabilitation, Kansai Medical University Hospital, Osaka, Japan
| | - Kimihiko Mori
- Department of Physical Therapy, Faculty of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Masanori Wakida
- Department of Physical Therapy, Faculty of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Yasuaki Arima
- Department of Rehabilitation, Kansai Medical University Hospital, Osaka, Japan
| | - Takanari Kubo
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Meguru Taguchi
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Osaka, Japan
- Department of Rehabilitation, Kansai Medical University Hospital, Osaka, Japan
| |
Collapse
|
2
|
Yamagata M, Tateuchi H, Asayama A, Ichihashi N. Relationship of the weaknesses of knee- and hip-spanning muscles with knee compression forces during stair ascent and descent. Gait Posture 2024; 113:1-5. [PMID: 38820763 DOI: 10.1016/j.gaitpost.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The musculoskeletal models have been improved to estimate accurate knee compression force (KCF) and have been used to reveal the causal relationship between KCF and muscle weakness. Previous studies have explored how muscle weakness influences the KCF during gait; however, the influence of muscle weakness is possibly larger during activities that require deeper knee flexion (e.g., stair ambulation) than other activities (e.g., gait) because of the small knee contact area of articular surfaces. RESEARCH QUESTION To explore how muscle weakness influences the KCF during stair ambulation. METHODS Ten young adults performed stair ascent and descent tasks at a comfortable speed. Based on a previous study, we created muscle weakness models of rectus femoris (RF), vastus muscles (VAS), gluteus medius (Gmed), and gluteus maximus (Gmax), and the medial and lateral KCF (KCFmed and KCFlat) during stair ambulation were calculated. RESULTS Similar to the gait, the Gmed weakness increased KCFmed and decreased KCFlat during stair ascent and descent. Whereas, unlike the gait, the Gmax weakness increased KCFmed during stair ascent and the VAS weakness decreased KCFmed and KCFlat during stair ascent and descent. Moreover, the percentage changes in KCF were similar (or large) during stair ambulation compared with those during gait. SIGNIFICANCE Considering the KCF alterations caused by each muscle weakness, the weaknesses in Gmax and Gmed might lead to cartilage loss and pain in the knee, and the VAS weakness might lead to low stability of the knee. The symptom during stair ambulation might help precisely identify the muscle requiring rehabilitation.
Collapse
Affiliation(s)
- Momoko Yamagata
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyama Higashimachi, Hirakata, Osaka 573-1136, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan.
| | - Hiroshige Tateuchi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Akihiro Asayama
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Noriaki Ichihashi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Goodman WW, Helms E, Graham DF. Individual Muscle Contributions to the Acceleration of the Center of Mass During the Barbell Back Squat in Trained Female Subjects. J Strength Cond Res 2023; 37:1947-1954. [PMID: 37556813 DOI: 10.1519/jsc.0000000000004506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
ABSTRACT Goodman, WW, Helms, E, and Graham, DF. Individual muscle contributions to the acceleration of the center of mass during the barbell back squat in trained female subjects. J Strength Cond Res 37(10): 1947-1954, 2023-The squat is used to enhance performance and rehabilitate the lower body. However, muscle forces and how muscles accelerate the center of mass (CoM) are not well understood. The purpose was to determine how lower extremity muscles contribute to the vertical acceleration of the CoM when squatting to parallel using 85% one-repetition maximum. Thirteen female subjects performed squats in a randomized fashion. Musculoskeletal modeling was used to obtain muscle forces and muscle-induced accelerations. The vasti, soleus, and gluteus maximus generated the largest upward accelerations of the CoM, whereas the muscles that produced the largest downward acceleration about the CoM were the hamstrings, iliopsoas, adductors, and tibialis anterior. Our findings indicate that a muscle's function is task and posture specific. That is, muscle function depends on both joint position and how an individual is interacting with the environment.
Collapse
Affiliation(s)
- William W Goodman
- Montana State University, College of Education, Health and Human Development, Bozeman, Montana; and
| | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - David F Graham
- Montana State University, College of Education, Health and Human Development, Bozeman, Montana; and
| |
Collapse
|
4
|
Neuman RM, Fey NP. There are unique kinematics during locomotor transitions between level ground and stair ambulation that persist with increasing stair grade. Sci Rep 2023; 13:8576. [PMID: 37237006 PMCID: PMC10219978 DOI: 10.1038/s41598-023-34857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Human ambulation is typically characterized during steady-state isolated tasks (e.g., walking, running, stair ambulation). However, general human locomotion comprises continuous adaptation to the varied terrains encountered during activities of daily life. To fill an important gap in knowledge that may lead to improved therapeutic and device interventions for mobility-impaired individuals, it is vital to identify how the mechanics of individuals change as they transition between different ambulatory tasks, and as they encounter terrains of differing severity. In this work, we study lower-limb joint kinematics during the transitions between level walking and stair ascent and descent over a range of stair inclination angles. Using statistical parametric mapping, we identify where and when the kinematics of transitions are unique from the adjacent steady-state tasks. Results show unique transition kinematics primarily in the swing phase, which are sensitive to stair inclination. We also train Gaussian process regression models for each joint to predict joint angles given the gait phase, stair inclination, and ambulation context (transition type, ascent/descent), demonstrating a mathematical modeling approach that successfully incorporates terrain transitions and severity. The results of this work further our understanding of transitory human biomechanics and motivate the incorporation of transition-specific control models into mobility-assistive technology.
Collapse
Affiliation(s)
- Ross M Neuman
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E Dean Keeton St, Austin, TX, 78712, USA.
| | - Nicholas P Fey
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E Dean Keeton St, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Ding Z, Henson DP, Sivapuratharasu B, McGregor AH, Bull AMJ. The effect of muscle atrophy in people with unilateral transtibial amputation for three activities: Gait alone does not tell the whole story. J Biomech 2023; 149:111484. [PMID: 36791515 DOI: 10.1016/j.jbiomech.2023.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Amputation imposes significant challenges in locomotion to millions of people with limb loss worldwide. The decline in the use of the residual limb results in muscle atrophy that affects musculoskeletal dynamics in daily activities. The aim of this study was to quantify the lower limb muscle volume discrepancy based on magnetic resonance (MR) imaging and to combine this with motion analysis and musculoskeletal modelling to quantify the effects in the dynamics of key activities of daily living. Eight male participants with traumatic unilateral transtibial amputation were recruited who were at least six months after receiving their definitive prostheses. The muscle volume discrepancies were found to be largest at the knee extensors (35 %, p = 0.008), followed by the hip abductors (17 %, p = 0.008). Daily activities (level walking, standing up from a chair and ascending one step) were measured in a motion analysis laboratory and muscle and joint forces quantified using a detailed musculoskeletal model for people with unilateral transtibial amputation which was calibrated in terms of the muscle volume discrepancies post-amputation at a subject-specific level. Knee extensor muscle forces were lower at the residual limb than the intact limb for all activities (p ≤ 0.008); residual limb muscle forces of the hip abductors (p ≤ 0.031) and adductors (p ≤ 0.031) were lower for standing-up and ascending one step. While the reduced knee extensor force has been reported by other studies, our results suggest a new biomechanically-based mitigation strategy to improve functional mobility, which could be achieved through strengthening of the hip abd/adductor muscles.
Collapse
Affiliation(s)
- Ziyun Ding
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Centre for Blast Injury Studies, Imperial College London, London, SW7 2AZ, United, Kingdom.
| | - David P Henson
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Centre for Blast Injury Studies, Imperial College London, London, SW7 2AZ, United, Kingdom
| | - Biranavan Sivapuratharasu
- Centre for Blast Injury Studies, Imperial College London, London, SW7 2AZ, United, Kingdom; Department of Surgery and Cancer, Imperial College London, W12 0BZ, United Kingdom
| | - Alison H McGregor
- Centre for Blast Injury Studies, Imperial College London, London, SW7 2AZ, United, Kingdom; Department of Surgery and Cancer, Imperial College London, W12 0BZ, United Kingdom
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Centre for Blast Injury Studies, Imperial College London, London, SW7 2AZ, United, Kingdom
| |
Collapse
|
6
|
Kim HK, Lu SH, Lu TW, Chou LS. Contribution of lower extremity muscles to center of mass acceleration during walking: Effect of body weight. J Biomech 2023; 146:111398. [PMID: 36459848 DOI: 10.1016/j.jbiomech.2022.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Overweight or obesity is known to be associated with altered activations of lower extremity muscles. Such changes in muscular function may lead to the development of mobility impairments or joint diseases. However, little is known about how individual lower extremity muscles contribute to the whole-body center of mass (COM) control during walking and the effect of body weight. This study examined the contribution of individual lower extremity muscle force to the COM accelerations during walking in overweight and non-overweight individuals. Musculoskeletal simulations were performed for the stance phase of walking with data collected from 11 overweight and 13 non-overweight adults to estimate lower extremity muscle forces and their contributions to the COM acceleration. Mean time-series data from each parameter were compared between body size groups using Statistical Parametric Mapping. Compared to the non-overweight group, the overweight group revealed a greater gastrocnemius contribution to the mediolateral (p = 0.006) and vertical (p < 0.001) COM accelerations during mid-stance, and had a lower vastus contribution to the anteroposterior COM acceleration (p < 0.001) during pre-swing. Increased contributions from the large posterior calf muscles to the mediolateral COM acceleration may be related to efforts to alleviate COM sway in overweight individuals.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Kinesiology, Iowa State University, Ames, IA, USA; School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Shiuan-Huei Lu
- Department of Biomedical Engineering, National Taiwan University, Taiwan
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taiwan
| | - Li-Shan Chou
- Department of Kinesiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
7
|
Makani A, Shirazi-Adl SA, Ghezelbash F. Computational biomechanics of human knee joint in stair ascent: Muscle-ligament-contact forces and comparison with level walking. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3646. [PMID: 36054682 DOI: 10.1002/cnm.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
About a third of knee joint disorders originate from the patellofemoral (PF) site that makes stair ascent a difficult activity for patients. A detailed finite element model of the knee joint is coupled to a lower extremity musculoskeletal model to simulate the stance phase of stair ascent. It is driven by the mean of measurements on the hip-knee-ankle moments-angles as well as ground reaction forces reported in healthy individuals. Predicted muscle activities compare well to the recorded electromyography data. Peak forces in quadriceps (3.87 BW, body weight, at 20% instance in our 607 N subject), medial hamstrings (0.77 BW at 20%), and gastrocnemii (1.21 BW at 80%) are estimated. Due to much greater flexion angles-moments in the first half of stance, large PF contact forces (peak of 3.1 BW at 20% stance) and stresses (peak of 4.83 MPa at 20% stance) are estimated that exceed their peaks in level walking by fourfold and twofold, respectively. Compared with level walking, ACL forces diminish in the first half of stance but substantially increase later in the second half (peak of 0.76 BW at 75% stance). Under nearly similar contact forces at 20% of stance, the contact stress on the tibiofemoral (TF) medial plateau reaches a peak (9.68 MPa) twice that on the PF joint suggesting the vulnerability of both joints. Compared with walking, stair ascent increases peak ACL force and both peak TF and PF contact stresses. Reductions in the knee flexion moment and/or angle appear as a viable strategy to mitigate internal loads and pain.
Collapse
Affiliation(s)
- Amirhossein Makani
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Québec, Canada
| | - Saeed A Shirazi-Adl
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Québec, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Québec, Canada
| |
Collapse
|
8
|
Thomeer LT, Guan S, Gray HA, Pandy MG. Articular contact motion at the knee during daily activities. J Orthop Res 2022; 40:1756-1769. [PMID: 34878691 DOI: 10.1002/jor.25222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
We combined mobile biplane X-ray imaging and magnetic resonance imaging to measure the regions of articular cartilage contact and cartilage thickness at the tibiofemoral and patellofemoral joints during six functional activities: standing, level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weight-bearing) knee flexion. The contact centers traced similar paths on the medial and lateral femoral condyles, femoral trochlea, and patellar facet in all activities while their locations on the tibial plateau were more varied. The translations of the contact centers on the femur and patella were tightly coupled to the tibiofemoral flexion angle in all activities (r2 > 0.95) whereas those on the tibia were only moderately related to the flexion angle (r2 > 0.62). The regions of contacting cartilage were significantly thicker than the regions of non-contacting cartilage on the patella, femoral trochlea, and the medial and lateral tibial plateaus in all activities (p < 0.001). There were no significant differences in thickness between contacting and non-contacting cartilage on the medial and lateral femoral condyles in all activities, except open-chain knee flexion. Our results provide partial support for the proposition that cartilage thickness is adapted to joint load and do not exclude the possibility that other factors, such as joint congruence, also play a role in regulating the structure and organization of healthy cartilage. The data obtained in this study may serve as a guide when evaluating articular contact motion in osteoarthritic and reconstructed knees.
Collapse
Affiliation(s)
- Lucas T Thomeer
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Shanyuanye Guan
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Hans A Gray
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Lanza MB, Arbuco B, Ryan AS, Shipper AG, Gray VL, Addison O. Systematic Review of the Importance of Hip Muscle Strength, Activation, and Structure in Balance and Mobility Tasks. Arch Phys Med Rehabil 2022; 103:1651-1662. [PMID: 34998714 PMCID: PMC10089299 DOI: 10.1016/j.apmr.2021.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The aim of this systematic review was to identify the associations of the hip abductor muscle strength, structure, and neuromuscular activation on balance and mobility in younger, middle-aged, and older adults. DATA SOURCES We followed PRISMA guidelines and performed searches in PubMed, Embase, CINAHL, and Physiotherapy Evidence Database. STUDY SELECTION Study selection included: (1) studies with patients aged 18 years or older and (2) studies that measured hip abduction torque, surface electromyography, and/or muscle structure and compared these measures with balance or mobility outcomes. DATA EXTRACTION The extracted data included the study population, setting, sample size, sex, and measurement evaluated. DATA SYNTHESIS The present systematic review is composed of 59 research articles including a total of 2144 young, middle-aged, and older adults (1337 women). We found that hip abductor strength is critical for balance and mobility function, independent of age. Hip abductor neuromuscular activation is also important for balance and mobility, although it may differ across ages depending on the task. Finally, the amount of fat inside the muscle appears to be one of the important factors of muscle structure influencing balance. CONCLUSIONS In conclusion, a change in all investigated variables (hip abduction torque, neuromuscular activation, and intramuscular fat) appears to have an effect during balance or mobility tasks across age ranges and may elicit better performance. Future studies are necessary to confirm the effect of these variables across age ranges and the effects of interventions.
Collapse
Affiliation(s)
- Marcel B Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD.
| | - Breanna Arbuco
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Alice S Ryan
- Department of Medicine, Division of Gerontology and Palliative Medicine, University of Maryland School of Medicine, Baltimore, MD; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD
| | - Andrea G Shipper
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD
| |
Collapse
|
10
|
Maniar N, Schache AG, Pizzolato C, Opar DA. Muscle function during single leg landing. Sci Rep 2022; 12:11486. [PMID: 35798797 PMCID: PMC9262956 DOI: 10.1038/s41598-022-15024-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Landing manoeuvres are an integral task for humans, especially in the context of sporting activities. Such tasks often involve landing on one leg which requires the coordination of multiple muscles in order to effectively dissipate kinetic energy. However, no prior studies have provided a detailed description of the strategy used by the major lower limb muscles to perform single-leg landing. The purpose of the present study was to understand how humans coordinate their lower limb muscles during a single-leg landing task. Marker trajectories, ground reaction forces (GRFs), and surface electromyography (EMG) data were collected from healthy male participants performing a single-leg landing from a height of 0.31 m. An EMG-informed neuromusculoskeletal modelling approach was used to generate neuromechanical simulations of the single-leg landing task. The muscular strategy was determined by computing the magnitude and temporal characteristics of musculotendon forces and energetics. Muscle function was determined by computing muscle contributions to lower limb net joint moments, GRFs and lower limb joint contact forces. It was found that the vasti, soleus, gluteus maximus and gluteus medius produced the greatest muscle forces and negative (eccentric) mechanical work. Downward momentum of the centre-of-mass was resisted primarily by the soleus, vasti, gastrocnemius, rectus femoris, and gluteus maximus, whilst forward momentum was primarily resisted by the quadriceps (vasti and rectus femoris). Flexion of the lower limb joints was primarily resisted by the uni-articular gluteus maximus (hip), vasti (knee) and soleus (ankle). Overall, our findings provide a unique insight into the muscular strategy used by humans during a landing manoeuvre and have implications for the design of athletic training programs.
Collapse
Affiliation(s)
- Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia. .,Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC, Australia.
| | - Anthony G Schache
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, VIC, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia.,Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC, Australia
| |
Collapse
|
11
|
Celik Y, Stuart S, Woo WL, Pearson LT, Godfrey A. Exploring human activity recognition using feature level fusion of inertial and electromyography data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1766-1769. [PMID: 36086572 DOI: 10.1109/embc48229.2022.9870909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearables are objective tools for human activity recognition (HAR). Advances in wearables enable synchronized multi-sensing within a single device. This has resulted in studies investigating the use of single or multiple wearable sensor modalities for HAR. Some studies use inertial data, others use surface electromyography (sEMG) from multiple muscles and different post-processing approaches. Yet, questions remain about accuracies relating to e.g., multi-modal approaches, and sEMG post-processing. Here, we explored how inertial and sEMG could be efficiently combined with machine learning and used with post-processing methods for better HAR. This study aims recognition of four basic daily life activities; walking, standing, stair ascent and descent. Firstly, we created a new feature vector based on the domain knowledge gained from previous mobility studies. Then, a feature level data fusion approach was used to combine inertial and sEMG data. Finally, two supervised learning classifiers (Support Vector Machine, SVM, and the k-Nearest Neighbors, kNN) were tested with 5-fold cross-validation. Results show the use of inertial data with sEMG increased overall accuracy by 3.5% (SVM) and 6.3% (kNN). Extracting features from linear envelopes instead of bandpass filtered sEMG improves overall HAR accuracy in both classifiers. Clinical Relevance- Post-processing on sEMG signals can improve the performance of multimodal HAR.
Collapse
|
12
|
Ziziene J, Daunoraviciene K, Juskeniene G, Raistenskis J. Comparison of kinematic parameters of children gait obtained by inverse and direct models. PLoS One 2022; 17:e0270423. [PMID: 35749351 PMCID: PMC9231751 DOI: 10.1371/journal.pone.0270423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to compare differences between kinematic parameters of pediatric gait obtained by direct kinematics (DK) (Plug-in-Gait) and inverse kinematics (IK) (AnyBody) models. Seventeen healthy children participated in this study. Both lower extremities were examined using a Vicon 8-camera motion capture system and a force plate. Angles of the hip, knee, and ankle joints were obtained based on DK and IK models, and ranges of motion (ROMs) were identified from them. The standard error of measurement, root-mean-squared error, correlation r, and magnitude-phase (MP) metrics were calculated to compare differences between the models’ outcomes. The determined standard error of measurement between ROMs from the DK and IK models ranged from 0.34° to 0.58°. A significant difference was found in the ROMs with the exception of the left hip’s internal/external rotation. The mean RMSE of all joints’ amplitudes exceeded the clinical significance limit and was 13.6 ± 4.0°. The best curve angles matching nature were found in the sagittal plane, where r was 0.79 to 0.83 and MP metrics were 0.05 to 0.30. The kinematic parameters of pediatric gait obtained by IK and DK differ significantly. Preferably, all of the results obtained by DK must be validated/verified by IK, in order to achieve a more accurate functional assessment of the individual. Furthermore, the use of IK expands the capabilities of gait analysis and allows for kinetic characterisation.
Collapse
Affiliation(s)
- Jurgita Ziziene
- Department of Biomechanical Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Kristina Daunoraviciene
- Department of Biomechanical Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Giedre Juskeniene
- Faculty of Medicine, Department of Rehabilitation, Physical and Sports Medicine, Health Science Institute, Vilnius University, Vilnius, Lithuania
| | - Juozas Raistenskis
- Faculty of Medicine, Department of Rehabilitation, Physical and Sports Medicine, Health Science Institute, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Lim YP, Lin YC, Pandy MG. Lower-limb muscle function in healthy young and older adults across a range of walking speeds. Gait Posture 2022; 94:124-130. [PMID: 35305479 DOI: 10.1016/j.gaitpost.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous studies have compared the functional roles of the individual lower-limb muscles when healthy young and older adults walk at their self-selected speeds. No age-group differences were observed in ankle muscle forces and ankle muscle contributions to support and progression. However, older adults displayed higher gluteus maximus (hip extensor) muscle forces and greater contributions to support during early stance. There are no data that describe the functions of the individual lower-limb muscles in healthy older adults for walking at speeds other than the self-selected speed. RESEARCH QUESTION How does walking speed affect the functional roles of the individual lower-limb muscles in healthy older adults? METHODS Three-dimensional gait data were recorded for 10 healthy young and 10 healthy older adults walking at slow, normal, and fast speeds (0.7 m/s, 1.4 m/s, and 1.7 m/s, respectively). Both groups walked at the same speed at each condition. The experimental data were combined with a full-body musculoskeletal model to calculate and compare muscle forces and muscle contributions to the vertical, fore-aft, and mediolateral ground reaction forces (support, progression, and balance, respectively) in both groups. RESULTS Lower-limb muscle function was similar in young and older adults when both groups walked at the same speed at each condition. The same five muscles - gluteus maximus, gluteus medius, vasti, gastrocnemius, and soleus - contributed most significantly to support, progression, and balance in both groups at all speeds. However, gluteus maximus generated greater support and braking forces during early stance and gastrocnemius contributed less to forward propulsion during late stance at all speeds in the older group. SIGNIFICANCE These results provide further insight into the functional roles of the individual lower-limb muscles of older adults during walking and could inform the design of exercise programs aimed at improving support and balance in those at risk of falling.
Collapse
Affiliation(s)
- Yoong Ping Lim
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi-Chung Lin
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Roelker SA, Schmitt LC, Chaudhari AMW, Siston RA. Discover your potential: The influence of kinematics on a muscle's ability to contribute to the sit-to-stand transfer. PLoS One 2022; 17:e0264080. [PMID: 35239690 PMCID: PMC8893693 DOI: 10.1371/journal.pone.0264080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Existing methods for estimating how individual muscles contribute to a movement require extensive time and experimental resources. In this study we developed an efficient method for determining how changes to lower extremity joint kinematics affect the potential of individual muscles to contribute to whole-body center-of-mass vertical (support) and anteroposterior (progression) accelerations. A 4-link 2-dimensional model was used to assess the effect of kinematic changes on muscle function. Joint kinematics were systematically varied throughout ranges observed during the momentum transfer phase of the sit-to-stand transfer. Each muscle's potential to contribute to support and progression was computed and compared to simulated potentials estimated by traditional dynamic simulation methods for young adults and individuals with knee osteoarthritis. The new method required 4-10s to compute muscle potentials per kinematic state and computed potentials were consistent with simulated potentials. The new method identified differences in muscle potentials between groups due to kinematic differences, particularly decreased anterior pelvic tilt in young adults, and revealed kinematic and muscle strengthening modifications to increase support. The methods presented provide an efficient, systematic approach to evaluate how joint kinematic adjustments alter a muscle's ability to contribute to movement and can identify potential sources of pathologic movement and rehabilitation strategies.
Collapse
Affiliation(s)
- Sarah A. Roelker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, United States of America
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Laura C. Schmitt
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States of America
- Sports Medicine Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Ajit M. W. Chaudhari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States of America
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States of America
- Sports Medicine Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Orthopaedics, The Ohio State University, Columbus, OH, United States of America
| | - Robert A. Siston
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States of America
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States of America
- Sports Medicine Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Orthopaedics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
15
|
Kwak K, Ko S, Kim D. Vibrotactile somatosensory stimulus to assist the transition from level walking to stair ascent in the elderly: a pilot study. BMC Musculoskelet Disord 2022; 22:1066. [PMID: 35209899 PMCID: PMC8876109 DOI: 10.1186/s12891-022-05093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Although, in daily living, almost all stair ambulation is conducted posterior to level walking, or vice versa, there are only a few studies related to the transition compared to the studies on steady-state stair walking. Furthermore, neuromotor control in the instant of the transition is different from that of the steady-state stair walking. However, there are only a few studies investigating the transition from level walking to stair ascent in the elderly by comparing with young adults, and there is no study on the assistance of the transition movement in the elderly who are experiencing neurophysiological changes. Thus, this pilot study aimed to compare the flat surface-to-stair ascent transition by the elderly to that seen in young adults, and to investigate how vibrotactile somatosensory stimulus (VSS), which has a positive effect on muscle performance and gait, affects the transition tasks in elderly people. Results In the first half of the stance phase, the elderly exhibited a higher moment and power of the hip extensor and a less moment and power of the knee extensor compared with young adults. In the second half of the stance phase, positive plantar-flexor power and support moment was higher in the elderly. In addition, during the single-limb support phase, dorsiflexion was maintained in the elderly, whereas young adults appeared to have decreased dorsiflexion. When the VSS was applied, the moment and power of the hip extensor, the plantar-flexor moment, and the support moment in the entire of the stance phase were increased. In addition, it was found that the degree of the kinetics parameters was different depending on the frequencies of the VSS. Conclusions This pilot study has revealed evident biomechanical differences between elderly people and young adults during the transition from level walking to stair ascent. Additionally, it has shown that the VSS may accentuate the features of the transition movement of the elderly and regulate joint kinetics. The results of the present pilot study can provide a base for further research and understanding of movement, which can be utilized in designing assistance aids for the elderly. Trial registration CRIS, KCT0005434, Registered 25 September 2020, Retrospectively registered.
Collapse
Affiliation(s)
- Kiyoung Kwak
- Division of Biomedical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Seunghun Ko
- Department of Healthcare Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Dongwook Kim
- Division of Biomedical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea. .,Research center for Healthcare & Welfare Instrument for the Elderly, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
16
|
Influence of foam thickness on the control of EMG activity during a step-down task in females. J Electromyogr Kinesiol 2021; 60:102585. [PMID: 34474330 DOI: 10.1016/j.jelekin.2021.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Compliant foams can be used to mitigate ground reaction forces. However, it is unknown how foam surfaces influence the modulation of leg muscle activity. Thus, the current study aimed to investigate how the neuromuscular system managed changes in expected loading due to various thickness of foam placed on the landing surface during a step down task. The surface electromyographic signal (sEMG) pre-activation duration and the root mean square (RMS) amplitude of tibialis anterior (TA), lateral gastrocnemius (LG), and vastus medialis (VM) of 10 active females were measured as they stepped-down with a single leg onto polyurethane foam slabs of varying thickness (0-50 mm). Pre-activation duration was not affected by the thickness of the foam padding. LG RMS amplitude was less in the foam conditions than the control (no- foam) condition, with the greatest reduction observed for the 50 mm foam condition. In some trials, the muscles remained active throughout the step-down task. In such instances, a sEMG onset time and thus a pre-activation duration could not be determined. All foam conditions significantly increased the odds of continuous muscle activity above that of the no-foam condition. The results indicate that foam surfaces may alter the modulation of muscle activity during step-down tasks.
Collapse
|
17
|
Quinn L, Riley N, Tyrell CM, Judd DL, Gill-Body KM, Hedman LD, Packel A, Brown DA, Nabar N, Scheets P. A Framework for Movement Analysis of Tasks: Recommendations From the Academy of Neurologic Physical Therapy's Movement System Task Force. Phys Ther 2021; 101:6307338. [PMID: 34160044 DOI: 10.1093/ptj/pzab154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/11/2021] [Accepted: 05/30/2021] [Indexed: 11/12/2022]
Abstract
The American Physical Therapy Association's Vision Statement of 2013 asserts that physical therapists optimize movement in order to improve the human experience. In accordance with this vision, physical therapists strive to be recognized as experts in movement analysis. However, there continues to be no accepted method to conduct movement analysis, nor an agreement of key terminology to describe movement observations. As a result, the Academy of Neurologic Physical Therapy organized a task force that was charged with advancing the state of practice with respect to these issues, including the development of a proposed method for movement analysis of tasks. This paper presents the work of the Task Force, which includes (1) development of a method for conducting movement analysis within the context of the movement continuum during 6 core tasks (sitting, sit to stand, standing, walking, step up/down, and reach/grasp/manipulate); (2) glossary of movement constructs that can provide a common language for movement analysis across a range of tasks: symmetry, speed, amplitude, alignment, verticality, stability, smoothness, sequencing, timing, accuracy, and symptom provocation; and (3) recommendations for task and environmental variations that can be systematically applied. The expectation is that this systematic framework and accompanying terminology will be easily adapted to additional patient or client-specific tasks, contribute to development of movement system diagnostic labels, and ultimately improve consistency across patient/client examination, evaluation, and intervention for the physical therapy profession. Next steps should include validation of this framework across patient/client groups and settings.
Collapse
Affiliation(s)
- Lori Quinn
- Dept of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Nora Riley
- Physical Therapy Department, St. Ambrose University, Davenport, Iowa, USA
| | - Christine M Tyrell
- Department of Physical Therapy, College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dana L Judd
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Lois D Hedman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - David A Brown
- School of Health Professions, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nikita Nabar
- Baylor Scott and White Inpatient Rehabilitation, Lakeway, Texas, USA
| | - Patricia Scheets
- Infinity Rehab, Quality & Clinical Outcomes, Wilsonville, Oregon, USA
| |
Collapse
|
18
|
Liu Y, Yoo WG. Effects of lower trunk movement in flat-back syndrome during stair climbing: A technical note. Technol Health Care 2021; 30:483-489. [PMID: 34024794 DOI: 10.3233/thc-202668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study investigated the differences in trunk sway during stair climbing between people with normal spinal alignment and people with flat-back syndrome. METHODS Twelve male volunteers with flat-back syndrome (global angle < 20 degrees) and 12 male volunteers with normal spinal alignment (global angle between 20 degrees and 30 degrees) were enrolled. An accelerator was attached to the third lumbar spine and the sway of each participant's trunk was measured during stair climbing. RESULT Participants with flat-back syndrome showed significant differences in vector, anteroposterior sway, and vertical sway of the trunk during stair climbing (p< 0.05). However, mediolateral sway of the trunk and gait time did not significantly differ between groups (p> 0.05). CONCLUSION Our findings can be used as baseline data for prevention of back pain. Furthermore, increased trunk sway can cause increased energy usage, leading to inefficient gait. Further research is needed to prevent this problem.
Collapse
|
19
|
Gray HA, Guan S, Thomeer LT, Pandy MG. Moment arm of the knee-extensor mechanism measured in vivo across a range of daily activities. J Biomech 2021; 123:110484. [PMID: 34062347 DOI: 10.1016/j.jbiomech.2021.110484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/27/2022]
Abstract
We measured the moment arm of the knee-extensor mechanism as ten healthy young individuals performed six functional activities: level walking, downhill walking, stair ascent, stair descent, open-chain (non-weight-bearing) knee flexion, and open-chain knee extension. The moment arm of the knee-extensor mechanism was described by the moment arm of the patellar-tendon force, which acts to rotate the tibia about the instantaneous axis of rotation (screw axis) of the knee. A mobile biplane X-ray imaging system enabled simultaneous measurements of the three-dimensional movements of the femur, tibia and patella during each activity, from which the position and orientation of the screw axis and the patellar-tendon moment arm (PTMA) were determined. Mean PTMA across all activities and all participants remained nearly constant (~46 mm) from 0° to 70° of knee flexion and decreased by no more than 20% at higher flexion angles. The magnitude of the PTMA varied more substantially across individuals than across activities, indicating that the moment arm is more heavily influenced by differences in knee-joint geometry than muscle loading. Hence, PTMA measurements obtained for a given activity performed by one individual may be used with good confidence to describe the PTMA for any other activity performed by the same individual. Caution is advised when using PTMA measurements obtained from one individual to describe the moment arm in another individual even once the data are normalized by knee bone size, as the PTMA varied by as much as 13% from the mean across individuals.
Collapse
Affiliation(s)
- Hans A Gray
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Shanyuanye Guan
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Lucas T Thomeer
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Marcus G Pandy
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
20
|
Smadi O, Abu Alim MA, Masad IS, Almashaqbeh S. The Influence of Carrying Anterior Load on the Sagittal and Frontal Plane Kinematics of Lower Extremities during Stair Ascending. J Biomed Phys Eng 2021; 11:93-102. [PMID: 33564644 PMCID: PMC7859378 DOI: 10.31661/jbpe.v0i0.2007-1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/18/2020] [Indexed: 12/05/2022]
Abstract
Background: Anterior load carriage is a one of the commonly performed activities in some industries. Stair climbing while carrying anterior load significantly alters different biomechanical mechanisms that can potentially affect the musculoskeletal function of the lower extremities. Objective: The study aims to assess the effect of carrying an anterior load (20% of body weight) on lower extremity kinematics during the kinematical phases of stairs ascent (weight acceptance, pull up, forward continuance, and swing phase). Material and Methods: In this experimental study, data were collected through the use of a custom made wooden staircase and OPtiTrack motion capture system was composed of 12 infrared cameras and a per modeled reflective marker set. Sixteen female college students volunteered to conduct two tasks of ascending stairs with and without an anterior load of approximately 20% of their body weight. The collected frontal and sagittal plane lower extremity joint angles were calculated using MATLAB software (version R2015a). Statistical comparison between the two study tasks was made using IBM SPSS Statistics software (version 25.0; SPSS Inc., Chicago, IL, USA). Results: Based on the results, there is significant difference (p-value < 0.05) between the two study tasks during ascending stair phases in all three sagittal plan lower extremity joint angles. Conclusion: Anterior load carried during stair ascent causes participants to depend more on the hip joint (higher flexion angles) compared to stair ascent without loads, which may increase the risk of falls and injuries, and the importance of muscle-strengthening activities and highlight the use of appropriate technique during load carriage.
Collapse
Affiliation(s)
- O Smadi
- PhD, Department of Biomedical Engineering, Faculty of Engineering, the Hashemite University, Zarqa, 13133, Jordan
| | - M A Abu Alim
- PhD, Department of Sport Sciences, Faculty of Physical Education, Yarmouk University, Irbid, 21163, Jordan
| | - I S Masad
- PhD, Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163, Jordan
| | - S Almashaqbeh
- MSc, Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163, Jordan
| |
Collapse
|
21
|
Harper NG, Wilken JM, Neptune RR. Muscle Contributions to Balance Control During Amputee and Nonamputee Stair Ascent. J Biomech Eng 2020; 142:121007. [PMID: 32469051 DOI: 10.1115/1.4047387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/08/2022]
Abstract
Dynamic balance is controlled by lower-limb muscles and is more difficult to maintain during stair ascent compared to level walking. As a result, individuals with lower-limb amputations often have difficulty ascending stairs and are more susceptible to falls. The purpose of this study was to identify the biomechanical mechanisms used by individuals with and without amputation to control dynamic balance during stair ascent. Three-dimensional muscle-actuated forward dynamics simulations of amputee and nonamputee stair ascent were developed and contributions of individual muscles, the passive prosthesis, and gravity to the time rate of change of angular momentum were determined. The prosthesis replicated the role of nonamputee plantarflexors in the sagittal plane by contributing to forward angular momentum. The prosthesis largely replicated the role of nonamputee plantarflexors in the transverse plane but resulted in a greater change of angular momentum. In the frontal plane, the prosthesis and nonamputee plantarflexors contributed oppositely during the first half of stance while during the second half of stance, the prosthesis contributed to a much smaller extent. This resulted in altered contributions from the intact leg plantarflexors, vastii and hamstrings, and the intact and residual leg hip abductors. Therefore, prosthetic devices with altered contributions to frontal-plane angular momentum could improve balance control during amputee stair ascent and minimize necessary muscle compensations. In addition, targeted training could improve the force production magnitude and timing of muscles that regulate angular momentum to improve balance control.
Collapse
Affiliation(s)
- Nicole G Harper
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| | - Jason M Wilken
- Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX 78234; Department of Physical Therapy and Rehabilitation Science, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52240
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| |
Collapse
|
22
|
Hainisch R, Kranzl A, Lin YC, Pandy MG, Gfoehler M. A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait. Comput Methods Biomech Biomed Engin 2020; 24:349-357. [PMID: 32940060 DOI: 10.1080/10255842.2020.1817405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to develop a generic musculoskeletal model of a healthy 10-year-old child and examine the effects of geometric scaling on the calculated values of lower-limb muscle forces during gait. Subject-specific musculoskeletal models of five healthy children were developed from in vivo MRI data, and these models were subsequently used to create a generic juvenile (GJ) model. Calculations of lower-limb muscle forces for normal walking obtained from two scaled-generic versions of the juvenile model (SGJ1 and SGJ2) were evaluated against corresponding results derived from an MRI-based model of one subject (SSJ1). The SGJ1 and SGJ2 models were created by scaling the GJ model using gait marker positions and joint centre locations derived from MRI imaging, respectively. Differences in the calculated values of peak isometric muscle forces and muscle moment arms between the scaled-generic models and MRI-based model were relatively small. Peak isometric muscle forces calculated for SGJ1 and SGJ2 were respectively 2.2% and 3.5% lower than those obtained for SSJ1. Model-predicted muscle forces for SGJ2 agreed more closely with calculations obtained from SSJ1 than corresponding results derived from SGJ1. These results suggest that accurate estimates of muscle forces during gait may be obtained by scaling generic juvenile models based on joint centre locations. The generic juvenile model developed in this study may be used as a template for creating subject-specific musculoskeletal models of normally-developing children in studies aimed at describing lower-limb muscle function during gait.
Collapse
Affiliation(s)
- Reinhard Hainisch
- Institute of Engineering Design and Product Engineering, TU Wien, Vienna, Austria
| | | | - Yi-Chung Lin
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Margit Gfoehler
- Institute of Engineering Design and Product Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
23
|
Cheung AS, Gray HA, Schache AG, Hoermann R, Bicknell J, Joon DL, Zajac JD, Pandy MG, Grossmann M. Biomechanical Leg Muscle Function During Stair Ambulation in Men Receiving Androgen Deprivation Therapy. J Gerontol A Biol Sci Med Sci 2020; 75:1715-1722. [PMID: 31310271 DOI: 10.1093/gerona/glz169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The role of testosterone in maintaining functional performance in older men remains uncertain. METHODS We conducted a 12-month prospective, observational case-control study including 34 men newly commencing androgen deprivation therapy for prostate cancer and 29 age-matched prostate cancer controls. Video-based motion capture and ground reaction force data combined with computational musculoskeletal modeling, and data were analyzed with a linear mixed model. RESULTS Compared with controls over 12 months, men receiving androgen deprivation therapy had a mean reduction in circulating testosterone from 14.1 nmol/L to 0.4 nmol/L, associated with reductions in peak knee extension torque, mean adjusted difference (MAD) -0.07 Nm/kg (95% confidence interval [CI]: -0.18, 0.04), p = .009, with a corresponding more marked decrease in quadriceps force MAD -0.11 × body weight (BW) [-0.27, 0.06], p = .045 (equating to a 9 kg force reduction for the mean body weight of 85 kg), and decreased maximal contribution of quadriceps to upward propulsion, MAD -0.47 m/s2 [-0.95, 0.02], p = .009. We observed between-group differences in several other parameters, including increased gluteus maximus force in men receiving androgen deprivation therapy, MAD 0.11 × BW [0.02, 0.20], p = .043, which may be compensatory. CONCLUSIONS Severe testosterone deprivation over 12 months is associated with selective deficits in lower-limb function evident with an important task of daily living.
Collapse
Affiliation(s)
- Ada S Cheung
- Department of Medicine (Austin Health), Victoria.,Department of Endocrinology, Heidelberg, Victoria, Australia
| | - Hans A Gray
- Department of Mechanical Engineering, The University of Melbourne, Victoria
| | - Anthony G Schache
- Department of Mechanical Engineering, The University of Melbourne, Victoria
| | | | | | - Daryl Lim Joon
- Department of Radiation Oncology, Austin Health, Heidelberg, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine (Austin Health), Victoria.,Department of Endocrinology, Heidelberg, Victoria, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, The University of Melbourne, Victoria
| | - Mathis Grossmann
- Department of Medicine (Austin Health), Victoria.,Department of Endocrinology, Heidelberg, Victoria, Australia
| |
Collapse
|
24
|
Roelker SA, Caruthers EJ, Hall RK, Pelz NC, Chaudhari AMW, Siston RA. Effects of Optimization Technique on Simulated Muscle Activations and Forces. J Appl Biomech 2020; 36:259-278. [PMID: 32663800 DOI: 10.1123/jab.2018-0332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 05/20/2019] [Accepted: 09/15/2019] [Indexed: 10/27/2023]
Abstract
Two optimization techniques, static optimization (SO) and computed muscle control (CMC), are often used in OpenSim to estimate the muscle activations and forces responsible for movement. Although differences between SO and CMC muscle function have been reported, the accuracy of each technique and the combined effect of optimization and model choice on simulated muscle function is unclear. The purpose of this study was to quantitatively compare the SO and CMC estimates of muscle activations and forces during gait with the experimental data in the Gait2392 and Full Body Running models. In OpenSim (version 3.1), muscle function during gait was estimated using SO and CMC in 6 subjects in each model and validated against experimental muscle activations and joint torques. Experimental and simulated activation agreement was sensitive to optimization technique for the soleus and tibialis anterior. Knee extension torque error was greater with CMC than SO. Muscle forces, activations, and co-contraction indices tended to be higher with CMC and more sensitive to model choice. CMC's inclusion of passive muscle forces, muscle activation-contraction dynamics, and a proportional-derivative controller to track kinematics contributes to these differences. Model and optimization technique choices should be validated using experimental activations collected simultaneously with the data used to generate the simulation.
Collapse
|
25
|
Sritharan P, Perraton LG, Munoz MA, Pivonka P, Bryant AL. Muscular Coordination of Single-Leg Hop Landing in Uninjured and Anterior Cruciate Ligament-Reconstructed Individuals. J Appl Biomech 2020; 36:235-243. [PMID: 32659745 DOI: 10.1123/jab.2019-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/22/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022]
Abstract
This study compared lower-limb muscle function, defined as the contributions of muscles to center-of-mass support and braking, during a single-leg hopping task in anterior cruciate ligament-reconstructed (ACLR) individuals and uninjured controls. In total, 65 ACLR individuals and 32 controls underwent a standardized anticipated single-leg forward hop. Kinematics and ground reaction force data were input into musculoskeletal models to calculate muscle forces and to quantify muscle function by decomposing the vertical (support) and fore-aft (braking) ground reaction force components into contributions by individual lower-limb muscles. Four major muscles, the vasti, soleus, gluteus medius, and gluteus maximus, were primarily involved in support and braking in both ACLR and uninjured groups. However, although the ACLR group demonstrated lower peak forces for these muscles (all Ps < .001, except gluteus maximus, P = .767), magnitude differences in these muscles' contributions to support and braking were not significant. ACLR individuals demonstrated higher erector spinae (P = .012) and hamstrings forces (P = .085) to maintain a straighter, stiffer landing posture with more forward lumbar flexion. This altered landing posture may have enabled the ACLR group to achieve similar muscle function to controls, despite muscle force deficits. Our findings may benefit rehabilitation and the development of interventions to enable faster and safer return to sport.
Collapse
|
26
|
Li W, Pickle NT, Fey NP. Time evolution of frontal plane dynamic balance during locomotor transitions of altered anticipation and complexity. J Neuroeng Rehabil 2020; 17:100. [PMID: 32682434 PMCID: PMC7368725 DOI: 10.1186/s12984-020-00731-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Background Locomotor transitions between different ambulatory tasks are essential activities of daily life. During these transitions, biomechanics are affected by various factors such as anticipation, movement direction, and task complexity. These factors are thought to influence the neuromotor regulation of dynamic balance, which can be quantified using whole-body angular momentum (H). However, the specific effects of these factors on balance during transitions are not well understood. The ability to regulate dynamic balance in the presence of these contextual factors is especially important in the frontal plane, as it is usually challenging to maintain walking balance in the frontal plane for individuals with neuromuscular impairments. The purpose of this study was to apportion their effects on the time evolution of frontal plane dynamic balance during locomotor transitions of healthy, unimpaired individuals. Methods Five healthy young subjects performed 10 separate types of transitions with discrete combinations of factors including complexity (straight walking, cuts, combined cut/stair ascent), cut style (crossover, sidestep), and anticipation (anticipated and unanticipated). A three-way analysis of variance (ANOVA) was used to compare the maxima, minima, and average rates of change of frontal-plane H among all transitions. Results Before transition, within anticipated state peak value of H increased 307% in crossover style relative to sidestep style (p < 0.0001). During Transition Phase, within unanticipated state the magnitudes of average rate of change and peak value increased 70 and 46% in sidestep style compared to crossover style (p < 0.0001 and p = 0.0003). Within sidestep style, they increased in unanticipated state relative to anticipated state. Later in Correction Phase, within both anticipation states peak value of H increased 41 and 75% in cut/stairs transitions relative to cuts (p = 0.010 and p < 0.0001). For cut/stairs transitions, peak value of H increased 45% in unanticipated state compared to anticipated state (p = 0.0001). Conclusions These results underlined the detrimental effects of unanticipated state and task complexity on dynamic balance during walking transitions. These findings imply increased demand of neuromuscular system and functional deficits of individuals with neuromuscular disorders during these tasks. In addition, cutting style influenced frontal plane dynamic balance before transition and in response to unanticipated direction change. Collectively, these results may help identify impaired balance control of fall-prone individuals and inform interventions targeting specific destabilizing scenarios.
Collapse
Affiliation(s)
- Wentao Li
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E Dean Keeton Street, Austin, TX, 78712, USA
| | - Nathaniel T Pickle
- Biomedical and Life Science Division, CFD Research Corp, Huntsville, AL, USA
| | - Nicholas P Fey
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E Dean Keeton Street, Austin, TX, 78712, USA. .,Department of Physical Medicine and Rehabilitation, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Caruthers EJ, Schneider G, Schmitt LC, Chaudhari AMW, Siston RA. What are the effects of simulated muscle weakness on the sit-to-stand transfer? Comput Methods Biomech Biomed Engin 2020; 23:765-772. [PMID: 32469249 DOI: 10.1080/10255842.2020.1764544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Populations with lower extremity muscle weakness have difficulty performing the sit-to-stand (STS) transfer. The degree of weakness that can be tolerated before compromising the ability to perform this task is unknown. Using dynamic simulations, we investigated the effects of weakness before changes in kinematics/kinetics would be required. Lower extremity muscles were weakened globally and individually and muscle forces were re-estimated as the model tracked original task kinematics/kinetics. The STS transfer was sensitive to quadriceps and plantarflexor weakness, suggesting that strengthening these muscles or changing kinematics are essential for populations who have difficulty rising from a chair independently.
Collapse
Affiliation(s)
- Elena J Caruthers
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.,Department of Engineering, Otterbein University, Westerville, OH, USA
| | - Grant Schneider
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.,Northwestern University, Evanston, IL, USA
| | - Laura C Schmitt
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Ajit M W Chaudhari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.,Division of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Robert A Siston
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.,Division of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Wang J, Gillette JC. Mediolateral postural stability when carrying asymmetric loads during stair negotiation. APPLIED ERGONOMICS 2020; 85:103057. [PMID: 32174345 DOI: 10.1016/j.apergo.2020.103057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to assess postural stability in the medial-lateral (ML) direction when carrying unilateral and bilateral loads during stair negotiation. Twenty-four healthy young adults were instructed to ascend and descend a three step staircase under three load conditions: no load, 20% body mass (BM) bilateral load, and 20% BM unilateral load. A modified time-to-contact (TTC) method was proposed to evaluate postural stability during stair negotiation. Carrying unilateral loads required more rapid postural adjustments as evidenced by lower minimum ML TTC and ML TTC percentage as compared bilateral loads and no load during stair descent. In addition, lower ML TTC and TTC percentage were found for loaded limb stance for stair descent. Taken together, unilateral loads and the loaded leg during stair descent are of concern when considering postural stability during load carriage. These results illustrate differing postural control challenges for stair ascent and descent during load carriage.
Collapse
Affiliation(s)
- Junsig Wang
- Department of Orthopaedic Surgery, University of Arkansas for Medical Science, Little Rock, AR, USA.
| | | |
Collapse
|
29
|
Harandi VJ, Ackland DC, Haddara R, Lizama LEC, Graf M, Galea MP, Lee PVS. Gait compensatory mechanisms in unilateral transfemoral amputees. Med Eng Phys 2020; 77:95-106. [PMID: 31919013 DOI: 10.1016/j.medengphy.2019.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/04/2019] [Accepted: 11/28/2019] [Indexed: 01/14/2023]
Abstract
Individuals with unilateral transfemoral amputation depend on compensatory muscle and joint function to generate motion of the lower limbs, which can produce gait asymmetry; however, the functional role of the intact and residual limb muscles of transfemoral amputees in generating progression, support, and mediolateral balance of the body during walking is not well understood. The aim of this study was to quantify the contributions of the intact and the residual limb's contralateral muscles to body center of mass (COM) acceleration during walking in transfemoral amputees. Three-dimensional subject-specific musculoskeletal models of 6 transfemoral amputees fitted with a socket-type prosthesis were developed and used to quantify muscle forces and muscle contributions to the fore-aft, vertical, and mediolateral body COM acceleration using a pseudo-inverse ground reaction force decomposition method during over-ground walking. Anterior pelvic tilt and hip range of motion in the sagittal and frontal planes of the intact limb was significantly larger than those in the residual limb (p<0.05). The mean contributions of the intact limb hip muscles to body COM support, forward propulsion and mediolateral balance were significantly greater than those in the residual limb (p<0.05). Gluteus maximus contributed more to propulsion and support, while gluteus medius contributed more to balance than other muscles in the intact limb than the residual limb. The findings demonstrate the role of the intact limb hip musculature in compensating for reduced or absent muscles and joint function in the residual limb of transfemoral amputees during walking. The results may be useful in developing rehabilitation programs and design of prostheses to improve gait symmetry and mitigate post-operative musculoskeletal pathology.
Collapse
Affiliation(s)
| | | | - Raneem Haddara
- Department of Biomedical Engineering, University of Melbourne, Australia.
| | | | - Mark Graf
- Department of Allied Health, Royal Melbourne Hospital, Melbourne, Australia.
| | - Mary Pauline Galea
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia.
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Australia.
| |
Collapse
|
30
|
Maniar N, Schache AG, Cole MH, Opar DA. Lower-limb muscle function during sidestep cutting. J Biomech 2019; 82:186-192. [DOI: 10.1016/j.jbiomech.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 08/27/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023]
|
31
|
Kersh ME, Martelli S, Zebaze R, Seeman E, Pandy MG. Mechanical Loading of the Femoral Neck in Human Locomotion. J Bone Miner Res 2018; 33:1999-2006. [PMID: 29920773 DOI: 10.1002/jbmr.3529] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 11/08/2022]
Abstract
Advancing age and reduced loading are associated with a reduction in bone formation. Conversely, loading increases periosteal apposition and may reduce remodeling imbalance and slow age-related bone loss, an important outcome for the proximal femur, which is a common site of fracture. The ability to take advantage of bone's adaptive response to increase bone strength has been hampered by a lack of knowledge of which exercises and specific leg muscles load the superior femoral neck: a common region of microcrack initiation and progression following a sideways fall. We used an in vivo method of quantifying focal strains within the femoral neck in postmenopausal women during walking, stair ambulation, and jumping. Relative to walking, stair ambulation and jumping induced significantly higher strains in the anterior and superior aspects of the femoral neck, common regions of microcrack initiation and progression following a fall. The gluteus maximus, a hip extensor muscle, induced strains in the femoral neck during stair ambulation and jumping, in contrast to walking which induced strains via the iliopsoas, a hip flexor. The ground reaction force was closely associated with the level of strain during each task, providing a surrogate indicator of the potential for a given exercise to load the femoral neck. The gluteal muscles combined with an increased ground reaction force relative to walking induce high focal strains within the anterosuperior region of the femoral neck and therefore provide a target for exercise regimens designed to slow bone loss and maintain or improve microstructural strength. Model files used for calculating femoral neck strains are available at uitbl.mechse.illinois.edu/downloads © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering Flinders University, Tonsley, SA, Australia
| | - Roger Zebaze
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Heidelberg West, VIC, Australia
| | - Ego Seeman
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Heidelberg West, VIC, Australia.,Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
32
|
Moniz-Pereira V, Kepple TM, Cabral S, João F, Veloso AP. Joint moments' contributions to vertically accelerate the center of mass during stair ambulation in the elderly: An induced acceleration approach. J Biomech 2018; 79:105-111. [PMID: 30104054 DOI: 10.1016/j.jbiomech.2018.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Falls are a serious problem faced by the elderly. Older adults report mostly to fall while performing locomotor activities, especially the ones requiring stair negotiation. During these tasks, older adults, when compared with young adults, seem to redistribute their lower limb joint moments. This may indicate that older adults use a different strategy to accelerate the body upward during these tasks. The purposes of this study were to quantify the contributions of each lower limb joint moment to vertically accelerate the center of mass during stair ascent and descent, in a sample of community-dwelling older adults, and to verify if those contributions were correlated with age and functional fitness level. A joint moment induced acceleration analysis was performed in 29 older adults while ascending and descending stairs at their preferred speed. Agreeing with previous studies, during both tasks, the ankle plantarflexor and the knee extensor joint moments were the main contributors to support the body. Although having a smaller contribution to vertically accelerate the body, during stair descent, the hip joint moment contribution was related with the balance score. Further, older adults, when compared with the results reported previously for young adults, seem to use more their knee extensor moment than the ankle plantarflexor moment to support the body when the COM downward velocity is increasing. By contributing for a better understanding of stair negotiation in community dwelling older adults, this study may help to support the design of interventions aiming at fall prevention and/or mobility enhancement within this population.
Collapse
Affiliation(s)
- Vera Moniz-Pereira
- Universidade de Lisboa, Faculdade de Motricidade Humana, CIPER, LBMF, P-1499-002 Lisboa, Portugal.
| | | | - Silvia Cabral
- Universidade de Lisboa, Faculdade de Motricidade Humana, CIPER, LBMF, P-1499-002 Lisboa, Portugal
| | - Filipa João
- Universidade de Lisboa, Faculdade de Motricidade Humana, CIPER, LBMF, P-1499-002 Lisboa, Portugal
| | - António P Veloso
- Universidade de Lisboa, Faculdade de Motricidade Humana, CIPER, LBMF, P-1499-002 Lisboa, Portugal
| |
Collapse
|
33
|
Harper N, Wilken J, Neptune R. Muscle Function and Coordination of Amputee Stair Ascent. J Biomech Eng 2018; 140:2687662. [PMID: 30029262 DOI: 10.1115/1.4040772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 02/28/2024]
Abstract
Ascending stairs is challenging following transtibial amputation due to the loss of the ankle muscles, which are critical to human movement. Efforts to improve stair ascent following amputation are hindered by limited understanding of how prostheses and remaining muscles contribute to stair ascent. This study developed a three-dimensional muscle-actuated forward dynamics simulation of amputee stair ascent to identify contributions of individual muscles and passive prosthesis to the biomechanical subtasks of stair ascent. The prosthesis was found to provide vertical propulsion throughout stair ascent, similar to non-amputee plantarflexors. However, the timing differed considerably. The prosthesis also contributed to braking, similar to non-amputee soleus, but to a greater extent. In contrast, the prosthesis was unable to replicate the functions of non-amputee gastrocnemius which contributes to forward propulsion during the second half of stance and leg swing initiation. To compensate, hamstrings and vasti of the residual leg increased their contributions to forward propulsion during the first and second halves of stance, respectively. The prosthesis also contributed to medial control, consistent with the non-amputee soleus but not gastrocnemius. Therefore, prosthesis designs that provide additional vertical propulsion as well as forward propulsion, lateral control and leg swing initiation at appropriate points in the gait cycle could improve amputee stair ascent. However, because non-amputee soleus and gastrocnemius contribute oppositely to many subtasks, it may be necessary to couple the prosthesis, which functions most similarly to soleus, with targeted rehabilitation programs focused on muscle groups that can compensate for gastrocnemius.
Collapse
Affiliation(s)
- Nicole Harper
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| | - Jason Wilken
- Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX 78234; Department of Physical Therapy and Rehabilitation Science, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52240
| | - Richard Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| |
Collapse
|
34
|
Lin YC, Walter JP, Pandy MG. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait. Ann Biomed Eng 2018; 46:1216-1227. [PMID: 29671152 DOI: 10.1007/s10439-018-2026-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/11/2018] [Indexed: 12/01/2022]
Abstract
We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.
Collapse
Affiliation(s)
- Yi-Chung Lin
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Jonathan P Walter
- CED Technologies, 6817 Southpoint Pkwy, Suite 1901, Jacksonville, FL, 32216, USA
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
35
|
Caruthers EJ, Oxendale KK, Lewis JM, Chaudhari AMW, Schmitt LC, Best TM, Siston RA. Forces Generated by Vastus Lateralis and Vastus Medialis Decrease with Increasing Stair Descent Speed. Ann Biomed Eng 2018; 46:579-589. [PMID: 29340933 PMCID: PMC7942835 DOI: 10.1007/s10439-018-1979-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022]
Abstract
Stair descent (SD) is a common, difficult task for populations who are elderly or have orthopaedic pathologies. Joint torques of young, healthy populations during SD increase at the hip and ankle with increasing speed but not at the knee, contrasting torque patterns during gait. To better understand the sources of the knee torque pattern, we used dynamic simulations to estimate knee muscle forces and how they modulate center of mass (COM) acceleration across SD speeds (slow, self-selected, and fast) in young, healthy adults. The vastus lateralis and vastus medialis forces decreased from slow to self-selected speeds as the individual lowered to the next step. Since the vasti are primary contributors to vertical support during SD, they produced lower forces at faster speeds due to the lower need for vertical COM support observed at faster speeds. In contrast, the semimembranosus and rectus femoris forces increased across successive speeds, allowing the semimembranosus to increase acceleration downward and forward and the rectus femoris to provide more vertical support and resistance to forward progression as SD speed increased. These results demonstrate the utility of dynamic simulations to extend beyond traditional inverse dynamics analyses to gain further insight into muscle mechanisms during tasks like SD.
Collapse
Affiliation(s)
- Elena J Caruthers
- Department of Mechanical and Aerospace Engineering, The Ohio State University, E305 Scott Laboratory, 201 W 19th Ave, Columbus, OH, 43210-1142, USA.
- Department of Engineering, Otterbein University, Westerville, OH, USA.
| | | | | | - Ajit M W Chaudhari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, E305 Scott Laboratory, 201 W 19th Ave, Columbus, OH, 43210-1142, USA
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Laura C Schmitt
- Jameson Crane Sports Medicine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Thomas M Best
- Departments of Orthopedics, Family Medicine, Biomedical Engineering, and Kinesiology, University Health Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert A Siston
- Department of Mechanical and Aerospace Engineering, The Ohio State University, E305 Scott Laboratory, 201 W 19th Ave, Columbus, OH, 43210-1142, USA
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Liu K, Liu Y, Yan J, Sun Z. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System. SENSORS (BASEL, SWITZERLAND) 2018; 18:E971. [PMID: 29587391 PMCID: PMC5948594 DOI: 10.3390/s18040971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles' synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data.
Collapse
Affiliation(s)
- Kun Liu
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| | - Yong Liu
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| | - Jianchao Yan
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| | - Zhenyuan Sun
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
37
|
Sritharan P, Lin YC, Richardson SE, Crossley KM, Birmingham TB, Pandy MG. Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients. J Orthop Res 2018; 36:2157-2166. [PMID: 29473665 DOI: 10.1002/jor.23883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
This study quantified the contributions by muscular, gravitational and inertial forces to the ground reaction force (GRF) and external knee adduction moment (EKAM) for knee osteoarthritis (OA) patients and controls walking at similar speeds. Gait data for 39 varus mal-aligned medial knee OA patients and 15 controls were input into musculoskeletal models to calculate the contributions of individual muscles and gravity to the fore-aft (progression), vertical (support), and mediolateral (balance) GRF, and the EKAM. The temporal patterns of contributions to GRF and EKAM were similar between the groups. Magnitude differences in GRF contributions were small but some reached significance. Peak GRF contributions were lower in patients except hamstrings in early-stance progression (p < 0.001) and gastrocnemius in late-stance progression (p < 0.001). Both EKAM peaks were higher in patients, due mainly to greater adduction contribution from gravity (p < 0.001) at the first peak, and lower abduction contributions from soleus (p < 0.001) and gastrocnemius (p < 0.001) at the second peak. Gluteus medius contributed most to EKAM in both groups, but was higher in patients during mid-stance only (p < 0.001). Differences in GRF contributions were attributed to altered quadriceps-hamstrings action as well as compensatory adaptation of the ankle plantarflexors to reduced gluteus medius action. The large effect of varus mal-alignment on the frontal-plane moment arms of the gravity, soleus, and gastrocnemius GRF contributions about the knee explained greater patient EKAM. Our results shed further light on how the EKAM contributes to altered knee-joint loads in OA and why some interventions may affect different portions of the EKAM waveform. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Prasanna Sritharan
- La Trobe Sports and Exercise Medicine Research Centre, School of Allied Health, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Yi-Chung Lin
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Sara E Richardson
- Faculty of Health Sciences, University of Western Ontario, Ontario, Canada
| | - Kay M Crossley
- La Trobe Sports and Exercise Medicine Research Centre, School of Allied Health, La Trobe University, Bundoora, Victoria, 3086, Australia
| | | | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Graham DF, Carty CP, Lloyd DG, Barrett RS. Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults. PLoS One 2017; 12:e0185564. [PMID: 29069097 PMCID: PMC5656315 DOI: 10.1371/journal.pone.0185564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance.
Collapse
Affiliation(s)
- David F. Graham
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Christopher P. Carty
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
- * E-mail:
| |
Collapse
|
39
|
Harper NG, Wilken JM, Neptune RR. Muscle Function and Coordination of Stair Ascent. J Biomech Eng 2017; 140:2653364. [DOI: 10.1115/1.4037791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/08/2022]
Abstract
Stair ascent is an activity of daily living and necessary for maintaining independence in community environments. One challenge to improving an individual's ability to ascend stairs is a limited understanding of how lower-limb muscles work in synergy to perform stair ascent. Through dynamic coupling, muscles can perform multiple functions and require contributions from other muscles to perform a task successfully. The purpose of this study was to identify the functional roles of individual muscles during stair ascent and the mechanisms by which muscles work together to perform specific subtasks. A three-dimensional (3D) muscle-actuated simulation of stair ascent was generated to identify individual muscle contributions to the biomechanical subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion, mediolateral control and leg swing. The vasti and plantarflexors were the primary contributors to vertical propulsion during the first and second halves of stance, respectively, while gluteus maximus and hamstrings were the primary contributors to forward propulsion during the first and second halves of stance, respectively. The anterior and posterior components of gluteus medius were the primary contributors to medial control, while vasti and hamstrings were the primary contributors to lateral control during the first and second halves of stance, respectively. To control leg swing, antagonistic muscles spanning the hip, knee, and ankle joints distributed power from the leg to the remaining body segments. These results compliment previous studies analyzing stair ascent and provide further rationale for developing targeted rehabilitation strategies to address patient-specific deficits in stair ascent.
Collapse
Affiliation(s)
- Nicole G. Harper
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 e-mail:
| | - Jason M. Wilken
- Department of Orthopaedics and Rehabilitation, Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX 78234 e-mail:
| | - Richard R. Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 e-mail:
| |
Collapse
|
40
|
Walter JP, Pandy MG. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling. Med Eng Phys 2017; 48:196-205. [PMID: 28712529 DOI: 10.1016/j.medengphy.2017.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/31/2017] [Accepted: 06/25/2017] [Indexed: 11/29/2022]
Abstract
The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait.
Collapse
Affiliation(s)
- Jonathan P Walter
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia.
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
41
|
Cheung AS, Gray H, Schache AG, Hoermann R, Lim Joon D, Zajac JD, Pandy MG, Grossmann M. Androgen deprivation causes selective deficits in the biomechanical leg muscle function of men during walking: a prospective case-control study. J Cachexia Sarcopenia Muscle 2017; 8:102-112. [PMID: 27897410 PMCID: PMC5326829 DOI: 10.1002/jcsm.12133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although muscle mass declines with testosterone deficiency in men, previous studies of muscle function have not demonstrated consistent deficits, likely due to relatively insensitive methodology. Our objective was to determine the effects of testosterone deprivation on the biomechanical function of individual lower-limb muscles. METHODS We conducted a 12-month prospective, observational case-control study of 34 men newly commencing androgen deprivation treatment (ADT) for prostate cancer and 29 age-matched prostate cancer controls. Participants were assessed at 0, 6, and 12 months while walking in a biomechanics laboratory. We combined video-based motion capture and ground reaction force data with computerized musculoskeletal modelling to assess the following primary outcomes: (i) peak joint torques at the hip, knee and ankle, and corresponding individual muscle forces; (ii) individual muscle contributions to acceleration of the body's centre of mass; and (iii) walking speed, stride length, and step width. A linear mixed model was used to compare mean differences between groups. RESULTS Compared with controls over 12 months, men receiving ADT had a mean reduction in total testosterone level from 14.1 to 0.4 nmol/L, and demonstrated more marked decreases in peak hip flexor torque by 14% [mean difference -0.11 N/kg (-0.19, -0.03), P = 0.01] and peak knee extensor torque by 16% [-0.11 N/kg (-0.20, -0.02), P = 0.02] of the initial mean value. Correspondingly, iliopsoas force decreased by 14% (P = 0.006), and quadriceps force decreased by 11%, although this narrowly missed statistical significance (P = 0.07). Soleus decreased contribution to forward acceleration of the body's centre of mass by 17% [mean difference -0.17 m/s2 (-0.29, -0.05), P < 0.01]. No significant changes between groups were observed in other joint torques or individual muscle contributions to acceleration of the body. Step width increased by 18% [mean adjusted difference 1.4 cm (0.6, 27.4), P = 0.042] in the ADT group compared with controls, with no change in stride length or walking speed. CONCLUSIONS Testosterone deprivation selectively decreases lower-limb muscle function, predominantly affecting muscles that support body weight, accelerate the body forwards during walking, and mediate balance. Future exercise and pro-myogenic interventional studies to mitigate ADT-associated sarcopenia should target these deficits.
Collapse
Affiliation(s)
- Ada S Cheung
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Hans Gray
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony G Schache
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rudolf Hoermann
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daryl Lim Joon
- Department of Radiation Oncology, Austin Health, Heidelberg, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mathis Grossmann
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
42
|
Farrag A. Comparison of stair walking mechanics between adult males and females. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2016. [DOI: 10.4103/1110-6611.196781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Jacobs JV. A review of stairway falls and stair negotiation: Lessons learned and future needs to reduce injury. Gait Posture 2016; 49:159-167. [PMID: 27427833 DOI: 10.1016/j.gaitpost.2016.06.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/27/2016] [Accepted: 06/23/2016] [Indexed: 02/02/2023]
Abstract
Stairways are a common location for falls, and they result in a disproportionate risk of death or severe injury. Stairway falls are a significant problem across the lifespan and are often coincident with risky behaviors during stair use. The mechanics of successful stair negotiation for healthy young and older adults have been well described. These studies imply that current stair design does not offer an optimal universal design to meet the needs of older adults or people with health conditions. In addition, impaired stair negotiation associates with more than impaired strength, including functional impairments of cognitive load, sensory function and central motor coordination. Identification of behavioral strategies or stairway environments that assist or hinder recovery from a loss of balance on stairs remains incomplete. Therefore, future studies should investigate the mechanisms of balance recovery on stairs as well as the effectiveness of environmental interventions to mitigate stairway falls and injuries. Potential areas for evaluation may include modifying stair dimensions, surfaces, handrails, visual cues, and removing distractors of attention. Studies should also evaluate combinatorial interventions on person-related factors, such as behavioral interventions to decrease risky behaviors during stair use as well as interventions on cognitive, sensory, and motor functions relevant to stair use. Moreover, future studies should take advantage of new technologies to record stair use outside the laboratory in order to identify people or locations at risk for stairway falls. Such studies would inform the potential for broad-spectrum programs that decrease the risk of stairway falls and injuries.
Collapse
Affiliation(s)
- Jesse V Jacobs
- Center for Physical Ergonomics, Liberty Mutual Research Institute for Safety, 71 Frankland Rd., Hopkinton, MA, 01748, USA.
| |
Collapse
|
44
|
Pickle NT, Grabowski AM, Auyang AG, Silverman AK. The functional roles of muscles during sloped walking. J Biomech 2016; 49:3244-3251. [PMID: 27553849 DOI: 10.1016/j.jbiomech.2016.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/25/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
Abstract
Sloped walking is biomechanically different from level-ground walking, as evidenced by changes in joint kinematics and kinetics. However, the changes in muscle functional roles underlying these altered movement patterns have not been established. In this study, we developed a total of 273 muscle-actuated simulations to assess muscle functional roles, quantified by induced body center-of-mass accelerations and trunk and leg power, during walking on slopes of 0°, ±3°, ±6°, and ±9° at 1.25m/s. The soleus and gastrocnemius both provided greater forward acceleration of the body parallel to the slope at +9° compared to level ground (+126% and +66%, respectively). However, while the power delivered to the trunk by the soleus varied with slope, the magnitude of net power delivered to the trunk and ipsilateral leg by the biarticular gastrocnemius was similar across all slopes. At +9°, the hip extensors absorbed more power from the trunk (230% hamstrings, 140% gluteus maximus) and generated more power to both legs (200% hamstrings, 160% gluteus maximus) compared to level ground. At -9°, the knee extensors (rectus femoris and vasti) accelerated the body upward perpendicular to the slope at least 50% more and backward parallel to the slope twice as much as on level ground. In addition, the knee extensors absorbed greater amounts of power from the ipsilateral leg on greater declines to control descent. Future studies can use these results to develop targeted rehabilitation programs and assistive devices aimed at restoring sloped walking ability in impaired populations.
Collapse
Affiliation(s)
- Nathaniel T Pickle
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA; VA Eastern Colorado Healthcare System, Denver, CO 80220, USA
| | - Arick G Auyang
- Nike Explore Team Sports Research Lab, Beaverton, OR 97005, USA
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
45
|
Chincisan A, Tecante K, Becker M, Magnenat-Thalmann N, Hurschler C, Choi HF. A computational approach to calculate personalized pennation angle based on MRI: effect on motion analysis. Int J Comput Assist Radiol Surg 2015; 11:683-93. [PMID: 26137896 DOI: 10.1007/s11548-015-1251-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/18/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE Muscles are the primary component responsible for the locomotion and change of posture of the human body. The physiologic basis of muscle force production and movement is determined by the muscle architecture (maximum muscle force, [Formula: see text], optimal muscle fiber length, [Formula: see text], tendon slack length, [Formula: see text], and pennation angle at optimal muscle fiber length, [Formula: see text]). The pennation angle is related to the maximum force production and to the range of motion. The aim of this study was to investigate a computational approach to calculate subject-specific pennation angle from magnetic resonance images (MRI)-based 3D anatomical model and to determine the impact of this approach on the motion analysis with personalized musculoskeletal models. METHODS A 3D method that calculates the pennation angle using MRI was developed. The fiber orientations were automatically computed, while the muscle line of action was determined using approaches based on anatomical landmarks and on centroids of image segmentation. Three healthy male volunteers were recruited for MRI scanning and motion capture acquisition. This work evaluates the effect of subject-specific pennation angle as musculoskeletal parameter in the lower limb, focusing on the quadriceps group. A comparison was made for assessing the contribution of personalized models on motion analysis. Gait and deep squat were analyzed using neuromuscular simulations (OpenSim). RESULTS The results showed variation of the pennation angle between the generic and subject-specific models, demonstrating important interindividual differences, especially for the vastus intermedius and vastus medialis muscles. The pennation angle variation between personalized and generic musculoskeletal models generated significant variation in muscle moments and forces during dynamic motion analysis. CONCLUSIONS A MRI-based approach to define subject-specific pennation angle was proposed and evaluated in motion analysis models. The significant differences obtained for the moments and muscle forces in quadriceps muscles indicate that a personalized approach in modeling the pennation angle can provide more individual details when investigating motion behaviors in specific subjects.
Collapse
Affiliation(s)
| | - Karelia Tecante
- Laboratory for Biomechanics and Biomaterials, Orthopaedic Department, Hannover Medical School, Hanover, Germany
| | | | | | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Orthopaedic Department, Hannover Medical School, Hanover, Germany
| | - Hon Fai Choi
- MIRALab, University of Geneva, Geneva, Switzerland
| |
Collapse
|