1
|
Gould SL, Davico G, Palanca M, Viceconti M, Cristofolini L. Identification of a lumped-parameter model of the intervertebral joint from experimental data. Front Bioeng Biotechnol 2024; 12:1304334. [PMID: 39104629 PMCID: PMC11298350 DOI: 10.3389/fbioe.2024.1304334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Through predictive simulations, multibody models can aid the treatment of spinal pathologies by identifying optimal surgical procedures. Critical to achieving accurate predictions is the definition of the intervertebral joint. The joint pose is often defined by virtual palpation. Intervertebral joint stiffnesses are either derived from literature, or specimen-specific stiffnesses are calculated with optimisation methods. This study tested the feasibility of an optimisation method for determining the specimen-specific stiffnesses and investigated the influence of the assigned joint pose on the subject-specific estimated stiffness. Furthermore, the influence of the joint pose and the stiffness on the accuracy of the predicted motion was investigated. A computed tomography based model of a lumbar spine segment was created. Joints were defined from virtually palpated landmarks sampled with a Latin Hypercube technique from a possible Cartesian space. An optimisation method was used to determine specimen-specific stiffnesses for 500 models. A two-factor analysis was performed by running forward dynamic simulations for ten different stiffnesses for each successfully optimised model. The optimisations calculated a large range of stiffnesses, indicating the optimised specimen-specific stiffnesses were highly sensitive to the assigned joint pose and related uncertainties. A limited number of combinations of optimised joint stiffnesses and joint poses could accurately predict the kinematics. The two-factor analysis indicated that, for the ranges explored, the joint pose definition was more important than the stiffness. To obtain kinematic prediction errors below 1 mm and 1° and suitable specimen-specific stiffnesses the precision of virtually palpated landmarks for joint definition should be better than 2.9 mm.
Collapse
Affiliation(s)
- Samuele L. Gould
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgio Davico
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Remus R, Selkmann S, Lipphaus A, Neumann M, Bender B. Muscle-driven forward dynamic active hybrid model of the lumbosacral spine: combined FEM and multibody simulation. Front Bioeng Biotechnol 2023; 11:1223007. [PMID: 37829567 PMCID: PMC10565495 DOI: 10.3389/fbioe.2023.1223007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Most spine models belong to either the musculoskeletal multibody (MB) or finite element (FE) method. Recently, coupling of MB and FE models has increasingly been used to combine advantages of both methods. Active hybrid FE-MB models, still rarely used in spine research, avoid the interface and convergence problems associated with model coupling. They provide the inherent ability to account for the full interplay of passive and active mechanisms for spinal stability. In this paper, we developed and validated a novel muscle-driven forward dynamic active hybrid FE-MB model of the lumbosacral spine (LSS) in ArtiSynth to simultaneously calculate muscle activation patterns, vertebral movements, and internal mechanical loads. The model consisted of the rigid vertebrae L1-S1 interconnected with hyperelastic fiber-reinforced FE intervertebral discs, ligaments, facet joints, and force actuators representing the muscles. Morphological muscle data were implemented via a semi-automated registration procedure. Four auxiliary bodies were utilized to describe non-linear muscle paths by wrapping and attaching the anterior abdominal muscles. This included an abdominal plate whose kinematics was optimized using motion capture data from upper body movements. Intra-abdominal pressure was calculated from the forces of the abdominal muscles compressing the abdominal cavity. For the muscle-driven approach, forward dynamics assisted data tracking was used to predict muscle activation patterns that generate spinal postures and balance the spine without prescribing accurate spinal kinematics. During calibration, the maximum specific muscle tension and spinal rhythms resulting from the model dynamics were evaluated. To validate the model, load cases were simulated from -10° extension to +30° flexion with weights up to 20 kg in both hands. The biomechanical model responses were compared with in vivo literature data of intradiscal pressures, intra-abdominal pressures, and muscle activities. The results demonstrated high agreement with this data and highlight the advantages of active hybrid modeling for the LSS. Overall, this new self-contained tool provides a robust and efficient estimation of LSS biomechanical responses under in vivo similar loads, for example, to improve pain treatment by spinal stabilization therapies.
Collapse
Affiliation(s)
- Robin Remus
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Sascha Selkmann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Marc Neumann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Beate Bender
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Breen A, De Carvalho D, Funabashi M, Kawchuk G, Pagé I, Wong AYL, Breen A. A Reference Database of Standardised Continuous Lumbar Intervertebral Motion Analysis for Conducting Patient-Specific Comparisons. Front Bioeng Biotechnol 2021; 9:745837. [PMID: 34646820 PMCID: PMC8503612 DOI: 10.3389/fbioe.2021.745837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Lumbar instability has long been thought of as the failure of lumbar vertebrae to maintain their normal patterns of displacement. However, it is unknown what these patterns consist of. Research using quantitative fluoroscopy (QF) has shown that continuous lumbar intervertebral patterns of rotational displacement can be reliably measured during standing flexion and return motion using standardised protocols and can be used to assess patients with suspected lumbar spine motion disorders. However, normative values are needed to make individualised comparisons. One hundred and thirty-one healthy asymptomatic participants were recruited and performed guided flexion and return motion by following the rotating arm of an upright motion frame. Fluoroscopic image acquisition at 15fps was performed and individual intervertebral levels from L2-3 to L5-S1 were tracked and analysed during separate outward flexion and return phases. Results were presented as proportional intervertebral motion representing these phases using continuous means and 95%CIs, followed by verification of the differences between levels using Statistical Parametric Mapping (SPM). A secondary analysis of 8 control participants matched to 8 patients with chronic, non-specific low back pain (CNSLBP) was performed for comparison. One hundred and twenty-seven asymptomatic participants’ data were analysed. Their ages ranged from 18 to 70 years (mean 38.6) with mean body mass index 23.8 kg/m2 48.8% were female. Both the flexion and return phases for each level evidenced continuous change in mean proportional motion share, with narrow confidence intervals, highly significant differences and discrete motion paths between levels as confirmed by SPM. Patients in the secondary analysis evidenced significantly less L5-S1 motion than controls (p < 0.05). A reference database of spinal displacement patterns during lumbar (L2-S1) intersegmental flexion and return motion using a standardised motion protocol using fluoroscopy is presented. Spinal displacement patterns in asymptomatic individuals were found to be distinctive and consistent for each intervertebral level, and to continuously change during bending and return. This database may be used to allow continuous intervertebral kinematics to drive dynamic models of joint and muscular forces as well as reference values against which to make patient-specific comparisons in suspected cases of lumbar spine motion disorders.
Collapse
Affiliation(s)
| | - Diana De Carvalho
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Martha Funabashi
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, ON, Canada.,Département de chiropratique, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Greg Kawchuk
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Isabelle Pagé
- Département de chiropratique, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR China
| | - Alan Breen
- AECC University College, Bournemouth, United Kingdom.,Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
| |
Collapse
|
4
|
To D, Breen A, Breen A, Mior S, Howarth SJ. Investigator analytic repeatability of two new intervertebral motion biomarkers for chronic, nonspecific low back pain in a cohort of healthy controls. Chiropr Man Therap 2020; 28:62. [PMID: 33228737 PMCID: PMC7685540 DOI: 10.1186/s12998-020-00350-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background Understanding the mechanisms underlying chronic, nonspecific low back pain (CNSLBP) is essential to advance personalized care and identify the most appropriate intervention. Recently, two intervertebral motion biomarkers termed “Motion Sharing Inequality” (MSI) and “Motion Sharing Variability” (MSV) have been identified for CNSLBP using quantitative fluoroscopy (QF). The aim of this study was to conduct intra- and inter-investigator analytic repeatability studies to determine the extent to which investigator error affects their measurement in clinical studies. Methods A cross-sectional cohort study was conducted using the image sequences of 30 healthy controls who received QF screening during passive recumbent flexion motion. Two independent investigators analysed the image sequences for MSI and MSV from October to November 2018. Intra and inter- investigator repeatability studies were performed using intraclass correlations (ICC), standard errors of measurement (SEM) and minimal differences (MD). Results Intra-investigator ICCs were 0.90 (0.81,0.95) (SEM 0.029) and 0.78 (0.59,0.89) (SEM 0.020) for MSI and MSV, respectively. Inter-investigator ICCs 0.93 (0.86,0.97) (SEM 0.024) and 0.55 (0.24,0.75) (SEM 0.024). SEMs for MSI and MSV were approximately 10 and 30% of their group means respectively. The MDs for MSI for intra- and inter-investigator repeatability were 0.079 and 0.067, respectively and for MSV 0.055 and 0.067. Conclusions MSI demonstrated substantial intra- and inter-investigator repeatability, suggesting that investigator input has a minimal influence on its measurement. MSV demonstrated moderate intra-investigator reliability and fair inter-investigator repeatability. Confirmation in patients with CNSLBP is now required.
Collapse
Affiliation(s)
- Daphne To
- Canadian Memorial Chiropractic College, 6100 Leslie Street, Toronto, Ontario, M2H 3J1, Canada
| | - Alexander Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Parkwood Road, Bournemouth, Dorset, BH5 2DF, UK
| | - Alan Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Parkwood Road, Bournemouth, Dorset, BH5 2DF, UK
| | - Silvano Mior
- Canadian Memorial Chiropractic College, 6100 Leslie Street, Toronto, Ontario, M2H 3J1, Canada
| | - Samuel J Howarth
- Canadian Memorial Chiropractic College, 6100 Leslie Street, Toronto, Ontario, M2H 3J1, Canada.
| |
Collapse
|
5
|
Brownhill K, Mellor F, Breen A, Breen A. Passive intervertebral motion characteristics in chronic mid to low back pain: A multivariate analysis. Med Eng Phys 2020; 84:115-125. [PMID: 32977908 DOI: 10.1016/j.medengphy.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Studies comparing back pain patients and controls on continuous intervertebral kinematics have shown differences using univariate parameters. Hitherto, multivariate approaches have not been applied to this high dimensional data, risking clinically relevant features being undetected. A multivariate re-analysis was carried out to estimate main modes of variation, and explore group differences. METHODS 40 participants with mechanical back pain and 40 matched controls underwent passive recumbent quantitative videofluoroscopy. Intervertebral angles of L2/3 to L4/5 were obtained for right and left side-bending, extension, and flexion. Principal components analysis (PCA) was used to identify the main modes of variation, and to obtain a lower dimensional representation for comparing groups. Linear discriminant analysis (LDA) was used to identify how groups differed. RESULTS PCA identified three main modes of variation, all relating to range of motion (ROM) and its distribution between joints. Significant differences were found for coronal plane motions only (right: p = 0.02, left: p = 0.03) . LDA identified a shift in ROM to more cranial joints in the back pain group. CONCLUSION The results confirm altered motion sharing between intervertebral joints in back pain, and provides more details about this. Further work is required to establish how these findings lead to pain, and so strengthen the theoretical basis for treatment and management of this condition.
Collapse
Affiliation(s)
- Kevin Brownhill
- University College of Osteopathy, 275 Borough High Street, London SE1 1JE, United Kingdom.
| | - Fiona Mellor
- Centre for Biomechanics Research, AECC University College, Bournemouth, United Kingdom.
| | - Alex Breen
- Centre for Biomechanics Research, AECC University College, Bournemouth, United Kingdom.
| | - Alan Breen
- Centre for Biomechanics Research, AECC University College, Bournemouth, United Kingdom.
| |
Collapse
|
6
|
Affolter C, Kedzierska J, Vielma T, Weisse B, Aiyangar A. Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics. J Biomech 2020; 102:109681. [DOI: 10.1016/j.jbiomech.2020.109681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
|
7
|
Byrne RM, Aiyangar AK, Zhang X. Sensitivity of musculoskeletal model-based lumbar spinal loading estimates to type of kinematic input and passive stiffness properties. J Biomech 2020; 102:109659. [DOI: 10.1016/j.jbiomech.2020.109659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
|
8
|
Breen A, Breen A. Dynamic interactions between lumbar intervertebral motion segments during forward bending and return. J Biomech 2020; 102:109603. [PMID: 31964520 DOI: 10.1016/j.jbiomech.2020.109603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Continuous dynamic multi-segmental studies of lumbar motion have added depth to our understanding of the biomechanics of back pain, but few have attempted to continuously measure the proportions of motion accepted by individual levels. This study attempted to compare the motion contributions of adjacent lumbar levels during an active weight bearing flexion and return protocol in chronic, non-specific low back pain (CNSLBP) patients and controls using quantitative fluoroscopy (QF). Eight CNSLBP patients received QF during guided standing lumbar flexion. Dynamic motion sharing of segments from L2 to S1 were calculated and analysed for interactions between levels. Eight asymptomatic controls were then matched to the 8 patients for age and sex and their motion sharing patterns compared. Share of intersegmental motion was found to be consistently highest at L2-L3 and L3-L4 and lowest at L5-S1 throughout the motion in both groups, with the exception of maximum flexion where L4-L5 received the greatest share. Change in motion sharing occurred throughout the flexion and return motion paths in both participant groups but tended to vary more at L4-L5 in patients (p < 0.05). In patients, L5-S1 provided less angular range (p < 0.05) and contributed less at maximum bend (p < 0.05), while L3-L4, on average over the bending sequence, provided a greater share of motion (p < 0.05). Intervertebral motion sharing inequality is therefore a normal feature during lumbar flexion. However, in patients, inequality was more pronounced, and variability of motion share at some levels increased. These effects may result from differences in muscular contraction or in the mechanical properties of the disc.
Collapse
Affiliation(s)
- Alexander Breen
- Centre for Biomechanics Research, AECC University College, UK.
| | - Alan Breen
- Faculty of Science and Technology, Bournemouth University, UK
| |
Collapse
|
9
|
Byrne RM, Aiyangar AK, Zhang X. A Dynamic Radiographic Imaging Study of Lumbar Intervertebral Disc Morphometry and Deformation In Vivo. Sci Rep 2019; 9:15490. [PMID: 31664074 PMCID: PMC6820767 DOI: 10.1038/s41598-019-51871-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Intervertebral discs are important structural components of the spine but also are significant sources of morbidity, especially for the “low back” lumbar region. Mechanical damage to, or degeneration of, the lumbar discs can diminish their structural integrity and elicit debilitating low back pain. Advancement of reparative or regenerative means to treat damaged or degenerated discs is hindered by a lack of basic understanding of the disc load-deformation characteristics in vivo. The current study presents an in vivo analysis of the morphometry and deformation of lumbar (L2-S1) intervertebral discs in 10 healthy participants while performing a common lifting act, using novel dynamic radiographic imaging of the lumbar vertebral body motion. Data analyses show uniquely different (p < 0.05) characteristics in morphometry, normal and shear strain patterns of the L5S1 discs, while the rest of lumbar discs exhibit great similarity. In particular shear strains in L2-L5 discs exhibited stronger linear correlations (R2 ≥ 0.80) between strain changes and amount of lumbar flexion-extension motion compared to L5S1 (R2 ≤ 0.5). The study therefore advances the state of knowledge on in vivo mechanical responses of the lumbar intervertebral discs during functional tasks.
Collapse
Affiliation(s)
- Ryan M Byrne
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | - Ameet K Aiyangar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15203, USA.,Mechanical Systems Engineering, EMPA (Swiss Federal Laboratories for Materials Science and Technology), 8600, Duebendorf, Switzerland
| | - Xudong Zhang
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review. Ann Biomed Eng 2019; 47:1491-1522. [DOI: 10.1007/s10439-019-02252-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/05/2023]
|
11
|
Chowdhury SK, Byrne RM, Zhou Y, Zhang X. Lumbar Facet Joint Kinematics and Load Effects During Dynamic Lifting. HUMAN FACTORS 2018; 60:1130-1145. [PMID: 30074402 DOI: 10.1177/0018720818790719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To examine the lumbar facet joint kinematics in vivo during dynamic lifting and the effects of the load lifted. BACKGROUND Although extensive efforts have been dedicated to investigating the risk factors of low back pain (LBP) associated with load handling in the workplace, the biomechanics of lumbar facet joints during such activities is not well understood. METHOD Fourteen healthy participants performed a load-lifting task while a dynamic stereo-radiography system captured their lumbar motion continuously. Data from 11 participants were included for subsequent analysis. A randomized block design was employed to study the load effect (4.5 kg, 9.0 kg, and 13.5 kg) on bilateral facet joint motions at approximately 60°, 40°, 20°, and 0° trunk-flexion postures. The facet orientations were also examined. RESULTS Significant load effects were found for the flexion and lateral bending and superior-inferior translation of the facet joints. The L5-S1 displayed greater lateral bending and twisting, which was due to its more posterolateral orientation than the L2-L3, L3-L4, and L4-L5 facet joints. The left-right asymmetry in facet orientation was observed, most prominently at L3-L4 and L5-S1 facet joints. CONCLUSION The lumbar facet joint kinematics are affected by the magnitude of the lifted load and are dependent on the orientations of articulating adjacent facets. APPLICATION This study provided new insights into the role of lumbar facet joints in vivo during lifting. Alterations in the facet joint kinematics due to vigorous functional demand can be one of the primary but overlooked mechanical factors in the causation of LBP.
Collapse
Affiliation(s)
- Suman K Chowdhury
- Texas A&M University, College Station, USA
- Texas A&M University, College Station, USA
| | - Ryan M Byrne
- University of Pittsburgh, Pennsylvania, USA
- Texas A&M University, College Station, USA
| | - Yu Zhou
- Texas A&M University, College Station, USA
| | | |
Collapse
|
12
|
Pavlova AV, Meakin JR, Cooper K, Barr RJ, Aspden RM. Variation in lifting kinematics related to individual intrinsic lumbar curvature: an investigation in healthy adults. BMJ Open Sport Exerc Med 2018; 4:e000374. [PMID: 30057776 PMCID: PMC6059291 DOI: 10.1136/bmjsem-2018-000374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
Objective Lifting postures are frequently implicated in back pain. We previously related responses to a static load with intrinsic spine shape, and here we investigate the role of lumbar spine shape in lifting kinematics. Methods Thirty healthy adults (18-65 years) performed freestyle, stoop and squat lifts with a weighted box (6-15 kg, self-selected) while being recorded by Vicon motion capture. Internal spine shape was characterised using statistical shape modelling (SSM) from standing mid-sagittal MRIs. Associations were investigated between spine shapes quantified by SSM and peak flexion angles. Results Two SSM modes described variations in overall lumbar curvature (mode 1 (M1), 55% variance) and the evenness of curvature distribution (mode 2 (M2), 12% variance). M1 was associated with greater peak pelvis (r=0.38, p=0.04) and smaller knee flexion (r=-0.40, p=0.03) angles; individuals with greater curviness preferred to lift with a stooped lifting posture. This was confirmed by analysis of those individuals with very curvy or very straight spines (|M1|>1 SD). There were no associations between peak flexion angles and mode scores in stoop or squat trials (p>0.05). Peak flexion angles were positively correlated between freestyle and squat trials but not between freestyle and stoop or squat and stoop, indicating that individuals adjusted knee flexion while maintaining their preferred range of lumbar flexion and that 'squatters' adapted better to different techniques than 'stoopers'. Conclusion Spinal curvature affects preferred lifting styles, and individuals with curvier spines adapt more easily to different lifting techniques. Lifting tasks may need to be tailored to an individual's lumbar spine shape.
Collapse
Affiliation(s)
- Anastasia V Pavlova
- Arthritis and Musculoskeletal Medicine, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Judith R Meakin
- Biophysics Research Group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Kay Cooper
- School of Health Sciences, Robert Gordon University, Faculty of Health and Social Care, Aberdeen, UK
| | - Rebecca J Barr
- Arthritis and Musculoskeletal Medicine, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.,Medicines Monitoring Unit (MEMO), Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Richard M Aspden
- Arthritis and Musculoskeletal Medicine, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
13
|
Breen A. Anti-directional cervical intervertebral motion: could it have gone any other way? JOURNAL OF SPINE SURGERY (HONG KONG) 2018; 4:461-464. [PMID: 30069544 PMCID: PMC6046349 DOI: 10.21037/jss.2018.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Alan Breen
- Faculty of Science and Technology, Bournemouth University, Bournemouth, UK
| |
Collapse
|
14
|
Sabnis AB, Chamoli U, Diwan AD. Is L5-S1 motion segment different from the rest? A radiographic kinematic assessment of 72 patients with chronic low back pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:1127-1135. [PMID: 29181575 DOI: 10.1007/s00586-017-5400-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE The relationship between biomechanical instability and degenerative changes in the lumbar spine in chronic low back pain (CLBP) patients remains controversial. The main objective of this retrospective radiographical study was to evaluate changes in kinematics at different lumbar levels (in particular the L5-S1 level) with progressive grades of disc degeneration and facet joint osteoarthritis in CLBP patients. METHODS Using standing neutral and dynamic flexion/extension (Fx/Ex) radiographs of the lumbar spine, in vivo segmental kinematics at L1-L2 through L5-S1 were evaluated in 72 consecutive CLBP patients. Disc degeneration was quantified using changes in signal intensity and central disc height on mid-sagittal T2-weighted magnetic resonance (MR) scans. Additionally, the presence or absence of facet joint osteoarthritis was noted on T2-weighted axial MR scans. RESULTS Disc degeneration and facet joint osteoarthritis occurred independent of each other at the L5-S1 level (p = 0.188), but an association was observed between the two at L4-L5 (p < 0.001) and L3-L4 (p < 0.05) levels. In the absence of facet joint osteoarthritis, the L5-S1 segment showed a greater range of motion (ROM) in Ex (3.3° ± 3.6°) and a smaller ROM in Fx (0.6° ± 4.2°) compared with the upper lumbar levels (p < 0.05), but the differences diminished in the presence of it. In the absence of facet joint osteoarthritis, no change in L5-S1 kinematics was observed with progressive disc degeneration, but in its presence, restabilisation of the L5-S1 segment was observed between mild and severe disc degeneration states. CONCLUSION The L5-S1 motion segment exhibited unique degenerative and kinematic characteristics compared with the upper lumbar motion segments. Disc degeneration and facet joint osteoarthritis occurred independent of each other at the L5-S1 level, but not at the other lumbar levels. Severe disc degeneration in the presence of facet joint osteoarthritis biomechanically restabilised the L5-S1 motion segment.
Collapse
Affiliation(s)
- Ashutosh B Sabnis
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, Sydney, NSW, 2217, Australia
| | - Uphar Chamoli
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, Sydney, NSW, 2217, Australia.
| | - Ashish D Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, Sydney, NSW, 2217, Australia
| |
Collapse
|
15
|
Byrne RM, Zhou Y, Zheng L, Chowdhury SK, Aiyangar A, Zhang X. Segmental variations in facet joint translations during in vivo lumbar extension. J Biomech 2017; 70:88-95. [PMID: 29096984 DOI: 10.1016/j.jbiomech.2017.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
The lumbar facet joint (FJ) is often associated with pathogenesis in the spine, but quantification of normal FJ motion remains limited to in vitro studies or static imaging of non-functional poses. The purpose of this study was to quantify lumbar FJ kinematics in healthy individuals during functional activity with dynamic stereo radiography (DSX) imaging. Ten asymptomatic participants lifted three known weights starting from a trunk-flexed (∼75°) position to an upright position while being imaged within the DSX system. High resolution computed tomography (CT) scan-derived 3D models of their lumbar vertebrae (L2-S1) were registered to the biplane 2D radiographs using a markerless model-based tracking technique providing instantaneous 3D vertebral kinematics throughout the lifting tasks. Effects of segment level and weight lifted were assessed using mixed-effect repeated measures ANOVA. Superior-inferior (SI) translation dominated FJ translation, with L5S1 showing significantly less translation magnitudes (Median (Md) = 3.5 mm, p < 0.0001) than L2L3, L3L4, and L4L5 segments (Md = 5.9 mm, 6.3 mm and 6.6 mm respectively). Linear regression-based slopes of continuous facet translations revealed strong linearity for SI translation (r2 > 0.94), reasonably high linearity for sideways sliding (Z-) (r2 > 0.8), but much less linearity for facet gap change (X-) (r2 ∼ 0.5). Caudal segments (L4-S1), particularly L5S1, displayed greater coupling compared to cranial (L2-L4) segments, revealing distinct differences overall in FJ translation trends at L5S1. No significant effect of weight lifted on FJ translations was detected. The study presents a hitherto unavailable and highly precise baseline dataset of facet translations measured during a functional, dynamic lifting task.
Collapse
Affiliation(s)
- Ryan M Byrne
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Yu Zhou
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Liying Zheng
- Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Suman K Chowdhury
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ameet Aiyangar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA; Mechanical Systems Engineering, EMPA (Swiss Federal Laboratories for Materials Science and Technology), 8600 Duebendorf, Switzerland.
| | - Xudong Zhang
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Breen A, Breen A. Uneven intervertebral motion sharing is related to disc degeneration and is greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort comparison of intervertebral dynamics using quantitative fluoroscopy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:145-153. [PMID: 28555313 DOI: 10.1007/s00586-017-5155-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/03/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Evidence of intervertebral mechanical markers in chronic, non-specific low back pain (CNSLBP) is lacking. This research used dynamic fluoroscopic studies to compare intervertebral angular motion sharing inequality and variability (MSI and MSV) during continuous lumbar motion in CNSLBP patients and controls. Passive recumbent and active standing protocols were used and the relationships of these variables to age and disc degeneration were assessed. METHODS Twenty patients with CNSLBP and 20 matched controls received quantitative fluoroscopic lumbar spine examinations using a standardised protocol for data collection and image analysis. Composite disc degeneration (CDD) scores comprising the sum of Kellgren and Lawrence grades from L2-S1 were obtained. Indices of intervertebral motion sharing inequality (MSI) and variability (MSV) were derived and expressed in units of proportion of lumbar range of motion from outward and return motion sequences during lying (passive) and standing (active) lumbar bending and compared between patients and controls. Relationships between MSI, MSV, age and CDD were assessed by linear correlation. RESULTS MSI was significantly greater in the patients throughout the intervertebral motion sequences of recumbent flexion (0.29 vs. 0.22, p = 0.02) and when flexion, extension, left and right motion were combined to give a composite measure (1.40 vs. 0.92, p = 0.04). MSI correlated substantially with age (R = 0.85, p = 0.004) and CDD (R = 0.70, p = 0.03) in lying passive investigations in patients and not in controls. There were also substantial correlations between MSV and age (R = 0.77, p = 0.01) and CDD (R = 0.85, p = 0.004) in standing flexion in patients and not in controls. CONCLUSION Greater inequality and variability of motion sharing was found in patients with CNSLBP than in controls, confirming previous studies and suggesting a biomechanical marker for the disorder at intervertebral level. The relationship between disc degeneration and MSI was augmented in patients, but not in controls during passive motion and similarly for MSV during active motion, suggesting links between in vivo disc mechanics and pain generation.
Collapse
Affiliation(s)
- Alan Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK.
| | - Alexander Breen
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, Bournemouth, BH5 2DF, UK
| |
Collapse
|
17
|
Eskandari A, Arjmand N, Shirazi-Adl A, Farahmand F. Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine. J Biomech 2017; 57:18-26. [DOI: 10.1016/j.jbiomech.2017.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/26/2022]
|
18
|
Aiyangar A, Zheng L, Anderst W, Zhang X. Instantaneous centers of rotation for lumbar segmental extension in vivo. J Biomech 2017; 52:113-121. [DOI: 10.1016/j.jbiomech.2016.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|