1
|
Tecchio P, Raiteri BJ, Hahn D. Eccentric exercise ≠ eccentric contraction. J Appl Physiol (1985) 2024; 136:954-965. [PMID: 38482578 DOI: 10.1152/japplphysiol.00845.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
Whether eccentric exercise involves active fascicle stretch is unclear due to muscle-tendon unit (MTU) series compliance. Therefore, this study investigated the impact of changing the activation timing and level (i.e., preactivation) of the contraction on muscle fascicle kinematics and kinetics of the human tibialis anterior during dynamometer-controlled maximal voluntary MTU-stretch-hold contractions. B-mode ultrasound and surface electromyography were used to assess muscle fascicle kinematics and muscle activity levels, respectively. Although joint kinematics were similar among MTU-stretch-hold contractions (∼40° rotation amplitude), increasing preactivation increased fascicle shortening and stretch amplitudes (9.9-23.2 mm, P ≤ 0.015). This led to increasing positive and negative fascicle work with increasing preactivation. Despite significantly different fascicle kinematics, similar peak fascicle forces during stretch occurred at similar fascicle lengths and joint angles regardless of preactivation. Similarly, residual force enhancement (rFE) following MTU stretch was not significantly affected (6.5-7.6%, P = 0.559) by preactivation, but rFE was strongly correlated with peak fascicle force during stretch (rrm = 0.62, P = 0.003). These findings highlight that apparent eccentric exercise causes shortening-stretch contractions at the fascicle level rather than isolated eccentric contractions. The constant rFE despite different fascicle kinematics and kinetics suggests that a passive element was engaged at a common muscle length among conditions (e.g., optimal fascicle length). Although it remains unclear whether different fascicle mechanics trigger different adaptations to eccentric exercise, this study emphasizes the need to consider MTU series compliance to better understand the mechanical drivers of adaptation to exercise.NEW & NOTEWORTHY Apparent eccentric exercises do not result in isolated eccentric contractions, but shortening-stretch contractions at the fascicle level. The amount of fascicle shortening and stretch depends on the preactivation during the exercise and cannot be estimated from the muscle-tendon unit (MTU) or joint kinematics. As different fascicle mechanics might trigger different adaptations to eccentric exercise, muscle-tendon unit series compliance and muscle preactivation need to be considered when eccentric exercise protocols are designed.
Collapse
Affiliation(s)
- Paolo Tecchio
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Brent J Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Hahn D, Han SW, Joumaa V. The history-dependent features of muscle force production: A challenge to the cross-bridge theory and their functional implications. J Biomech 2023; 152:111579. [PMID: 37054597 DOI: 10.1016/j.jbiomech.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The cross-bridge theory predicts that muscle force is determined by muscle length and the velocity of active muscle length changes. However, before the formulation of the cross-bridge theory, it had been observed that the isometric force at a given muscle length is enhanced or depressed depending on active muscle length changes before that given length is reached. These enhanced and depressed force states are termed residual force enhancement (rFE) and residual force depression (rFD), respectively, and together they are known as the history-dependent features of muscle force production. In this review, we introduce early attempts in explaining rFE and rFD before we discuss more recent research from the past 25 years which has contributed to a better understanding of the mechanisms underpinning rFE and rFD. Specifically, we discuss the increasing number of findings on rFE and rFD which challenge the cross-bridge theory and propose that the elastic element titin plays a role in explaining muscle history-dependence. Accordingly, new three-filament models of force production including titin seem to provide better insight into the mechanism of muscle contraction. Complementary to the mechanisms behind muscle history-dependence, we also show various implications for muscle history-dependence on in-vivo human muscle function such as during stretch-shortening cycles. We conclude that titin function needs to be better understood if a new three-filament muscle model which includes titin, is to be established. From an applied perspective, it remains to be elucidated how muscle history-dependence affects locomotion and motor control, and whether history-dependent features can be changed by training.
Collapse
Affiliation(s)
- Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University, Bochum, Germany; School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Seong-Won Han
- Institute of Physiology II, Faculty of Medicine, University of Münster, Germany.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
3
|
Jacob KBE, Hinks A, Power GA. The day-to-day reliability of residual force enhancement during voluntary and electrically stimulated contractions. Appl Physiol Nutr Metab 2023; 48:183-197. [PMID: 36473169 DOI: 10.1139/apnm-2022-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Residual force enhancement (rFE) is characterized by increased steady-state isometric force following active muscle lengthening compared with a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation. Many studies have characterized rFE in humans; however, the day-to-day reliability of rFE is unclear. We aimed to examine day-to-day reliability of rFE across various contraction types in the dorsiflexors in males and females. Twenty-five recreationally active young adults completed two visits, 1 week apart. Following determination of maximum voluntary contraction (MVC) strength, rFE was assessed during maximal voluntary effort, 20% MVC electrically stimulated, and 20% MVC torque-matching conditions. Each rFE condition was completed at two joint excursions: 0°-20° plantar flexion (PF) and 0°-40° PF. Intraclass correlation coefficients (ICC) assessed relative reliability and typical error of measurement (TEM), and the correlation variability of TEM (CVTEM) assessed absolute reliability. Electrically stimulated contractions demonstrated the highest reliability at 40° PF (ICC: 0.9; CVTEM: 22.8%) and 20° PF (ICC: 0.8; CVTEM: 34.3%), followed by maximal voluntary contractions at 40° PF (ICC: 0.7; CVTEM: 55.1%) and 20° PF (ICC: 0.1; CVTEM: 81.1%). The torque-matching trials showed poor reliability for 20° and 40° PF (ICC: -0.1 to 0.3; CVTEM: 118.1%-155.2%). Our results demonstrate higher reliability of rFE when stretching to the descending limb of the torque-angle relationship compared with the plateau region, and in electrically stimulated compared with voluntary contractions in the dorsiflexors for both males and females.
Collapse
Affiliation(s)
- Kaitlyn B E Jacob
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Frischholz J, Raiteri BJ, Cresswell AG, Hahn D. Corticospinal excitability remains unchanged in the presence of residual force enhancement and does not contribute to increased torque production. PeerJ 2022; 10:e12729. [PMID: 35036100 PMCID: PMC8743010 DOI: 10.7717/peerj.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Following stretch of an active muscle, muscle force is enhanced, which is known as residual force enhancement (rFE). As earlier studies found apparent corticospinal excitability modulations in the presence of rFE, this study aimed to test whether corticospinal excitability modulations contribute to rFE. METHODS Fourteen participants performed submaximal plantar flexion stretch-hold and fixed-end contractions at 30% of their maximal voluntary soleus muscle activity in a dynamometer. During the steady state of the contractions, participants either received subthreshold or suprathreshold transcranial magnetic stimulation (TMS) of their motor cortex, while triceps surae muscle responses to stimulation were obtained via electromyography (EMG), and net ankle joint torque was recorded. B-mode ultrasound imaging was used to confirm muscle fascicle stretch during stretch-hold contractions in a subset of participants. RESULTS Following stretch of the plantar flexors, an average rFE of 7% and 11% was observed for contractions with subthreshold and suprathreshold TMS, respectively. 41-46 ms following subthreshold TMS, triceps surae muscle activity was suppressed by 19-25%, but suppression was not significantly different between stretch-hold and fixed-end contractions. Similarly, the reduction in plantar flexion torque following subthreshold TMS was not significantly different between contraction conditions. Motor evoked potentials, silent periods and superimposed twitches following suprathreshold TMS were also not significantly different between contraction conditions. DISCUSSION As TMS of the motor cortex did not result in any differences between stretch-hold and fixed-end contractions, we conclude that rFE is not linked to changes in corticospinal excitability.
Collapse
Affiliation(s)
- Jasmin Frischholz
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Brent J. Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Andrew G. Cresswell
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
de Campos D, Orssatto LBR, Trajano GS, Herzog W, Fontana HDB. Residual force enhancement in human skeletal muscles: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:94-103. [PMID: 34062271 PMCID: PMC8847921 DOI: 10.1016/j.jshs.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
OBJECTIVE We reviewed and appraised the existing evidence of in vivo manifestations of residual force enhancement in human skeletal muscles and assessed, through a meta-analysis, the effect of an immediate history of eccentric contraction on the subsequent torque capacity of voluntary and electrically evoked muscle contractions. METHODS Our search was conducted from database inception to May 2020. Descriptive information was extracted from, and quality was assessed for, 45 studies. Meta-analyses and metaregressions were used to analyze residual torque enhancement and its dependence on the angular amplitude of the preceding eccentric contraction. RESULTS Procedures varied across studies with regards to muscle group tested, angular stretch amplitude, randomization of contractions, time window analyzed, and verbal command. Torque capacity in isometric (constant muscle tendon unit length and joint angle) contractions preceded by an eccentric contraction was typically greater compared to purely isometric contractions, and this effect was greater for electrically evoked muscle contractions than voluntary contractions. Residual torque enhancement differed across muscle groups for the voluntary contractions, with a significant enhancement in torque observed for the adductor pollicis, ankle dorsiflexors, ankle plantar flexors, and knee extensors, but not for the elbow and knee flexors. Meta-regressions revealed that the angular amplitude of the eccentric contraction (normalized to the respective joint's full range of motion) was not associated with the residual torque enhancement observed. CONCLUSION There is evidence of residual torque enhancement for most, but not all, muscle groups, and residual torque enhancement is greater for electrically evoked than for voluntary contractions. Contrary to our hypothesis, and contrary to generally accepted findings on isolated muscle preparations, residual torque enhancement in voluntary and electrically evoked contractions does not seem to depend on the angular amplitude of the preceding eccentric contraction.
Collapse
Affiliation(s)
- Daiani de Campos
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianopolis 88040-001, Brazil
| | - Lucas B R Orssatto
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane QLD 4030, Australia
| | - Gabriel S Trajano
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane QLD 4030, Australia
| | - Walter Herzog
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianopolis 88040-001, Brazil; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB T2N 1N4, Canada
| | - Heiliane de Brito Fontana
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianopolis 88040-001, Brazil; School of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil.
| |
Collapse
|
6
|
Paternoster FK, Holzer D, Arlt A, Schwirtz A, Seiberl W. Residual force enhancement in humans: Is there a true non-responder? Physiol Rep 2021; 9:e14944. [PMID: 34337885 PMCID: PMC8327164 DOI: 10.14814/phy2.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022] Open
Abstract
When an active muscle is stretched and kept isometrically active, the resulting force is enhanced compared to a purely isometric reference contraction at the same muscle length and activity; a generally accepted muscle property called residual force enhancement (rFE). Interestingly, studies on voluntary muscle action regularly identify a significant number of participants not showing rFE. Therefore, the aim was to unmask possible confounders for this non-responsive behavior. Ten participants performed maximum voluntary isometric plantarflexion contractions with and without preceding stretch. Contractions were accompanied by the assessment of voluntary activation using the twitch-interpolation technique. The same test protocol was repeated four additional times with a least on day rest in-between. Additionally, at the first and fifth sessions, a submaximal tetanic muscle-stimulation condition was added. At both muscle-stimulation sessions mean rFE higher 10% (p < 0.028) was found. In contrast, during voluntary muscle action, individual participants showed inconsistent rFE across sessions and only one session (#3) had significant rFE (5%; p = 0.023) in group means. As all participants clearly had rFE in electrical stimulation conditions, structural deficits cannot explain the missing rFE in voluntary muscle action. However, we also did not find variability in voluntary activation levels or muscle activity as the confounding characteristics of "non-responders."
Collapse
Affiliation(s)
- Florian K. Paternoster
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Denis Holzer
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Anna Arlt
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Ansgar Schwirtz
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Wolfgang Seiberl
- Department of Human SciencesHuman Movement ScienceBundeswehr University MunichNeubibergGermany
| |
Collapse
|
7
|
The effect of stretch-shortening magnitude and muscle-tendon unit length on performance enhancement in a stretch-shortening cycle. Sci Rep 2021; 11:14605. [PMID: 34272461 PMCID: PMC8285374 DOI: 10.1038/s41598-021-94046-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
Stretch-induced residual force enhancement (rFE) is associated with increased performance in a stretch–shortening cycle (SSC). Although the influence of different range of motions and muscle–tendon unit lengths has been investigated in pure stretch-hold experiments in vivo, the contribution to a SSC movement in human muscles remains unclear. In two sessions, 25 healthy participants performed isometric reference (ISO), shortening hold (SHO) and SSC contractions on an isokinetic dynamometer. We measured the net knee-joint torque, rotational mechanical work, knee kinematics and fascicle behavior (m. vastus lateralis) of the upper right leg.
In session 1 the SHO- and SSC-magnitude was changed respectively (SHO: 50°–20°, 80°–20° and 110°–20°; SSC: 20°–50°–20°, 20°–80°–20° and 20°–110°–20°) and in session 2 the muscle–tendon unit length (SHO: 50°–20°, 80°–50° and 110°–80°; SSC: 20°–50°–20°, 50°–80°–50° and 80°–110°–80°; straight leg = 0°). In both sessions, rotational work was significantly (p < 0.05) increased in the SSC compared to the SHO contractions (in the range of 8.1–17.9%). No significant difference of joint torque was found in the steady-state for all SSC-magnitudes compared to the corresponding SHO contractions in session 1. In session 2, we found only significantly (p < 0.05) less depressed joint torque in the SSC at the longest muscle–tendon unit length compared to the corresponding SHO condition, without any differences in knee kinematics and fascicle behavior. Therefore, the physiological relevance of rFE might be particularly important for movements at greater muscle–tendon unit lengths.
Collapse
|
8
|
Hessel AL, Monroy JA, Nishikawa KC. Non-cross Bridge Viscoelastic Elements Contribute to Muscle Force and Work During Stretch-Shortening Cycles: Evidence From Whole Muscles and Permeabilized Fibers. Front Physiol 2021; 12:648019. [PMID: 33854441 PMCID: PMC8039322 DOI: 10.3389/fphys.2021.648019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The sliding filament-swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Jenna A Monroy
- W.M. Keck Science Department, Claremont Colleges, Claremont, CA, United States
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
9
|
Caron KE, Burr JF, Power GA. The Effect of a Stretch-Shortening Cycle on Muscle Activation and Muscle Oxygen Consumption: A Study of History-Dependence. J Strength Cond Res 2020; 34:3139-3148. [PMID: 33105364 DOI: 10.1519/jsc.0000000000003815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Caron, KE, Burr, JF, and Power, GA.. The effect of a stretch-shortening cycle on muscle activation and muscle oxygen consumption: a study of history-dependence. J Strength Cond Res 34(11): 3139-3148, 2020-Stretch-shortening cycles (SSCs) are observed in a variety of human movements and are associated with increases in performance. Few studies have considered the effects of stretch-induced residual force enhancement (rFE) and shortening-induced residual force depression (rFD) during an SSC, and none have considered these properties during voluntary contractions. With force matched via a robotically resisted Smith machine, we hypothesized that in the isometric steady-state following an SSC (a) muscle activation (electromyography) of the knee and hip extensors would be greater and (b) muscle oxygen consumption be higher than the reference isometric condition (ISO), but less than the rFD condition. Subjects (n = 20, male, 24.9 ± 3.9 year) performed a squat exercise over 100-140° knee angle and a matched ISO at the top and bottom of the squat. After active shortening, the vastus medialis (VM), vastus lateralis (VL), and gluteus maximus (GM) showed activation increase in the rFD-state compared with ISO (∼15%, ∼11%, and ∼25% respectively). During the isometric steady-state following the SSC, there was no difference in activation as compared with ISO for VM, VL, but GM showed an activation increase of ∼15%. VM and VL showed an activation increase in the rFD-state compared with the isometric steady-state following SSC (∼16 and ∼10% respectively). Muscle oxygen consumption (tissue saturation index) was not different during the isometric steady-states following rFD and SSC compared with ISO. During a voluntary SSC exercise, the activation increase expected in the FD-state was attenuated, with no change in muscle oxygen consumption. The concomitant role of rFE and rFD during a voluntary position-matched SSC seems to counteract shortening-induced activation increase and may optimize movement economy.
Collapse
Affiliation(s)
- Kevin E Caron
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph Ontario, Canada
| | | | | |
Collapse
|
10
|
Bakenecker P, Raiteri BJ, Hahn D. Force enhancement in the human vastus lateralis is muscle-length-dependent following stretch but not during stretch. Eur J Appl Physiol 2020; 120:2597-2610. [PMID: 32892321 PMCID: PMC7674334 DOI: 10.1007/s00421-020-04488-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/29/2020] [Indexed: 01/27/2023]
Abstract
Purpose Force enhancement is the phenomenon of increased forces during (transient force enhancement; tFE) and after (residual force enhancement; rFE) eccentric muscle actions compared with fixed-end contractions. Although tFE and rFE have been observed at short and long muscle lengths, whether both are length-dependent remains unclear in vivo. Methods We determined maximal-effort vastus lateralis (VL) force-angle relationships of eleven healthy males and selected one knee joint angle at a short and long muscle lengths where VL produced approximately the same force (85% of maximum). We then examined tFE and rFE at these two lengths during and following the same amount of knee joint rotation. Results We found tFE at both short (11.7%, P = 0.017) and long (15.2%, P = 0.001) muscle lengths. rFE was only observed at the long (10.6%, P < 0.001; short: 1.3%, P = 0.439) muscle length. Ultrasound imaging revealed that VL muscle fascicle stretch magnitude was greater at long compared with short muscle lengths (mean difference: (tFE) 1.7 mm, (rFE) 1.9 mm, P ≤ 0.046), despite similar isometric VL forces across lengths (P ≥ 0.923). Greater fascicle stretch magnitude was likely to be due to greater preload forces at the long compared with short muscle length (P ≤ 0.001). Conclusion At a similar isometric VL force capacity, tFE was not muscle-length-dependent at the lengths we tested, whereas rFE was greater at longer muscle length. We speculate that the in vivo mechanical factors affecting tFE and rFE are different and that greater stretch of a passive component is likely contributing more to rFE at longer muscle lengths. Electronic supplementary material The online version of this article (10.1007/s00421-020-04488-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Bakenecker
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Gesundheitscampus Nord 10, 44801, Bochum, Germany.
| | - Brent J Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Gesundheitscampus Nord 10, 44801, Bochum, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Gesundheitscampus Nord 10, 44801, Bochum, Germany.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
de Brito Fontana H, de Campos D, Sakugawa RL. Predictors of residual force enhancement in voluntary contractions of elbow flexors. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:318-325. [PMID: 30356605 PMCID: PMC6189239 DOI: 10.1016/j.jshs.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/24/2018] [Accepted: 02/20/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The steady-state increase in muscle force generating potential following a lengthening contraction is called residual force enhancement (RFE). In this study, we aimed to test for differences in torque, electromyographic activity (EMG), and the associated neuromuscular efficiency (NME) between isometric voluntary contractions of elbow flexors preceded and not preceded by a lengthening contraction. The dependence of such differences on (i) stretch amplitude, (ii) the region of the force-length (FxL) relationship where contraction occurs, and (iii) the individual's ability to produce (negative) work during the stretch was investigated. METHODS Sixteen healthy adults participated in the study. Elbow flexor torque, angle, and biceps brachii EMG for purely isometric contractions (reference contractions) and for isometric contractions preceded by active stretches of 20° and 40° were measured at the ascending, plateau, and descending regions of subject-specific FxL curves. All contractions were performed in an isokinetic dynamometer. Two-factor (stretch × FxL region) repeated measures analysis of variance ANOVAs was used to analyze the effect of active stretch on EMG, torque, and NME across conditions. The relationships between mechanical work during stretch-calculated as the torque-angular displacement integral-and the changes in EMG, torque, and NME were analyzed using Pearson correlation. RESULTS In general, torque, EMG, and NME following active stretches differed from the values observed for the purely isometric reference contractions. While although the detailed effects of active stretch on torque and EMG differed between regions of the FxL relationship, NME increased by about 19% for all muscle lengths. Up to 30% of the interindividual variability in torque generating potential change in response to active stretching was accounted for by differences in (negative) work capacity between subjects. CONCLUSION Our results suggest that (i) RFE contributes to "flatten" the elbow flexor torque-angle relationship, favoring torque production at lengths where the purely isometric torques are reduced substantially, and (ii) RFE contributes to a reduction in energy cost of torque production during isometric contractions for the entire operating range.
Collapse
Affiliation(s)
- Heiliane de Brito Fontana
- Biological Sciences Center, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, Florianópolis, SC 88040-900, Brazil
- Biomechanics Laboratory, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, Florianópolis, SC 88040-900, Brazil
| | - Daiani de Campos
- Biomechanics Laboratory, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, Florianópolis, SC 88040-900, Brazil
| | - Raphael Luiz Sakugawa
- Biomechanics Laboratory, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
12
|
Hahn D, Riedel TN. Residual force enhancement contributes to increased performance during stretch-shortening cycles of human plantar flexor muscles in vivo. J Biomech 2018; 77:190-193. [PMID: 29935734 DOI: 10.1016/j.jbiomech.2018.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
Abstract
It is well known that muscular force production is history-dependent, which results in enhanced (RFE) and depressed (RFD) steady-state forces after stretching and shortening, respectively. However, it remains unclear if force-enhancing mechanisms can contribute to increased performance during in vivo stretch-shortening cycles (SSCs) of human locomotor muscles. The purpose of this study was to investigate whether RFE-related mechanisms contribute to enhanced force and power output during SSCs of the human plantar flexor muscles. Net ankle torques of fourteen participants were measured during and after pure isometric, pure stretch, pure shortening, and SSC contractions when the triceps surae muscles were electrically stimulated at a submaximal level that resulted in 30% of their maximum isometric torque. Dynamic contractions were performed over an amplitude of 15°, from 5° plantar flexion to 10° dorsiflexion, at a speed of 120° s-1. External ankle work during shortening was 11.6% greater during SSCs compared to pure shortening contractions (p = .003). Additionally, RFD after SSCs (8.6%) was reduced compared to RFD after pure shortening contractions (12.0%; p < .05). It is therefore concluded that RFE-related mechanisms contribute to increased performance following SSCs of human locomotor muscles. Since RFD after SSCs decreased although work during shortening was increased, we speculate that the relevant mechanism lies outside actin-myosin interaction. Finally, our data suggests that RFE might be relevant and beneficial for human locomotion whenever a muscle is stretched, but this needs to be confirmed.
Collapse
Affiliation(s)
- Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr-University Bochum, Germany; School of Human Movement and Nutrition Sciences, University of Queensland, Australia.
| | - Timotheus N Riedel
- Human Movement Science, Faculty of Sport Science, Ruhr-University Bochum, Germany
| |
Collapse
|
13
|
Abstract
A systematic literature search was conducted to review the evidence of residual force enhancement (RFE) in vivo human muscle. The search, adhered to the PRISMA statement, of CINAHL, EBSCO, Embase, MEDLINE, and Scopus (inception-July 2017) was conducted. Full-text English articles that assessed at least 1 measure of RFE in vivo voluntarily contracted human skeletal muscle were selected. The methodologies of included articles were assessed against the Downs and Black checklist. Twenty-four studies were included (N = 424). Pooled Downs and Black scores ranked "fair" ([Formula: see text] [2.26]). RFE was observed in all muscles tested. Joint range of motion varied from 15° to 60°. Contraction intensities ranged from 10% to >95% maximum. Although transient force enhancement during the stretch phase may change with angular velocity, RFE in the subsequent isometric phase is independent of velocity. The magnitude of RFE was influenced by smaller stretch amplitudes and greatest at joint angles indicative of longer muscle lengths. Contraction and activation intensity influenced RFE, particularly during the initial isometric contraction phase of a poststretch isometric contraction. RFE resulted in increased torque production, reduced muscular activation, and enhanced torque production when the neuromuscular system is weakened seen in an aged population.
Collapse
|
14
|
Oxygen consumption of gastrocnemius medialis muscle during submaximal voluntary isometric contractions with and without preceding stretch. Sci Rep 2017; 7:4674. [PMID: 28680113 PMCID: PMC5498657 DOI: 10.1038/s41598-017-04068-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/09/2017] [Indexed: 11/11/2022] Open
Abstract
After an active muscle stretch, maintaining a certain amount of force in the following isometric phase is accompanied by less muscle activation compared to an isometric contraction without preceding active stretch at the corresponding muscle length. This reduced muscle activation might be related to reduced metabolic costs, such as the oxidative metabolism. Hence, the aim of this study was to clarify if mechanisms associated with stretch-induced activation reduction (AR) also influence oxygen consumption of voluntary activated human muscles after active stretch. Plantarflexion torque of 20 subjects was measured during 1) purely isometric and 2) active stretch contractions (26°, 60°/s), at a submaximal torque level of 30% MVC. Oxygen consumption (m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{\rm{V}}$$\end{document}V·O2) of gastrocnemius medialis (GM) was estimated by near-infrared spectroscopy while applying arterial occlusion. Since the overall group did not show AR at GM after active stretch (p > 0.19), a subgroup was defined (n = 10) showing AR of 13.0 ± 10.3% (p = 0.00). However, for both purely isometric and active contractions m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{\rm{V}}$$\end{document}V·O2 was the same (p = 0.32). Therefore, AR triggered by active stretch did not affect m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{\rm{V}}$$\end{document}V·O2 of active human muscle.
Collapse
|
15
|
Fukutani A, Misaki J, Isaka T. Influence of Joint Angle on Residual Force Enhancement in Human Plantar Flexors. Front Physiol 2017; 8:234. [PMID: 28484395 PMCID: PMC5401888 DOI: 10.3389/fphys.2017.00234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/03/2017] [Indexed: 02/05/2023] Open
Abstract
Compared to pure isometric contractions, isometric muscle force at a given length is larger when the eccentric contraction is conducted before the isometric contraction. This phenomenon is widely known as residual force enhancement, and has been confirmed consistently in isolated muscle experiments. The purpose of this study was to confirm whether residual force enhancement also occurs in human plantar flexors and to examine its joint angle dependence. Eleven men participated in this study. Isometric joint torque was measured in a Control trial (pure isometric contraction) and Residual force enhancement (RFE) trial (isometric contraction after eccentric contraction) at plantar flexion 0° (Short condition) and dorsiflexion 15° (Long condition). Fascicle length and pennation angle of the medial gastrocnemius were measured simultaneously to evaluate the influence of architectural parameters on isometric joint torque. Isometric joint torque observed in the Short condition was not significantly different between the Control and RFE trials (Control: 42.9 ± 8.0 Nm, RFE: 45.1 ± 8.4 Nm) (p = 0.200). In contrast, significant differences in isometric joint torque were observed in the Long condition between Control and RFE trials (Control: 40.5 ± 9.3 Nm, RFE: 47.1 ± 10.5 Nm) (p = 0.001). Fascicle length and pennation angle were not different between Control and RFE trials in the Short and Long conditions. Isometric joint torque was larger when eccentric contraction was conducted before isometric contraction while architectural differences were not observed, indicating that residual force enhancement occurs in human plantar flexors. However, the influence of residual force enhancement may be limited in dorsiflexed positions because the magnitude of residual force enhancement is considered to be prominent in the descending limb (long muscle length condition) and small in the ascending limb (short muscle length condition) where human plantar flexors operate in plantar flexed positions.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Kinesiology, University of CalgaryCalgary, AB, Canada.,Japan Society for the Promotion of Science, Postdoctoral Fellowships for Research AbroadTokyo, Japan.,Research Organization of Science and Technology, Ritsumeikan UniversityShiga, Japan
| | - Jun Misaki
- Graduate School of Sport and Health Science, Ritsumeikan UniversityShiga, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan UniversityShiga, Japan
| |
Collapse
|
16
|
Reduced activation in isometric muscle action after lengthening contractions is not accompanied by reduced performance fatigability. Sci Rep 2016; 6:39052. [PMID: 27966620 PMCID: PMC5155269 DOI: 10.1038/srep39052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 01/16/2023] Open
Abstract
After active lengthening contractions, a given amount of force can be maintained with less muscle activation compared to pure isometric contractions at the same muscle length and intensity. This increase in neuromuscular efficiency is associated with mechanisms of stretch-induced residual force enhancement. We hypothesized that stretch-related increase in neuromuscular efficiency reduces fatigability of a muscle during submaximal contractions. 13 subjects performed 60 s isometric knee extensions at 60% of maximum voluntary contraction (MVC) with and without prior stretch (60°/s, 20°). Each 60 s trial was preceded and followed by neuromuscular tests consisting of MVCs, voluntary activation (VA) and resting twitches (RT), and there was 4 h rest between sets. We found a significant (p = 0.036) 10% reduction of quadriceps net-EMG after lengthening compared to pure isometric trials. However, increase in neuromuscular efficiency did not influence the development of fatigue. Albeit we found severe reduction of MVC (30%), RT (30%) and VA (5%) after fatiguing trials, there were no differences between conditions with and without lengthening. As the number of subjects showing no activation reduction increased with increasing contraction time, intensity may have been too strenuous in both types of contractions, such that a distinction between different states of fatigue was not possible anymore.
Collapse
|
17
|
Does weightlifting increase residual force enhancement? J Biomech 2016; 49:2047-2052. [DOI: 10.1016/j.jbiomech.2016.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|