1
|
Ning B, Londono I, Laporte C, Villemure I. Zoledronate reduces loading-induced microdamage in cortical ulna of ovariectomized rats. J Mech Behav Biomed Mater 2024; 150:106350. [PMID: 38171139 DOI: 10.1016/j.jmbbm.2023.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
As a daily physiological mechanism in bone, microdamage accumulation dissipates energy and helps to prevent fractures. However, excessive damage accumulation might bring adverse effects to bone mechanical properties, which is especially problematic among the osteoporotic and osteopenic patients treated by bisphosphonates. Some pre-clinical studies in the literature applied forelimb loading models to produce well-controlled microdamage in cortical bone. Ovariectomized animals were also extensively studied to assimilate human conditions of estrogen-related bone loss. In the present study, we combined both experimental models to investigate microdamage accumulation in the context of osteopenia and zoledronate treatment. Three-month-old normal and ovariectomized rats treated by saline or zoledronate underwent controlled compressive loading on their right forelimb to create in vivo microdamage, which was then quantified by barium sulfate contrast-enhanced micro-CT imaging. Weekly in vivo micro-CT scans were taken to evaluate bone (re)modeling and to capture microstructural changes over time. After sacrifice, three-point-bending tests were performed to assess bone mechanical properties. Results show that the zoledronate treatment can reduce cortical microdamage accumulation in ovariectomized rats, which might be explained by the enhancement of several bone structural properties such as ultimate force, yield force, cortical bone area and volume. The rats showed increased bone formation volume and surface after the generation of microdamage, especially for the normal and the ovariectomized groups. Woven bone formation was also observed in loaded ulnae, which was most significant in ovariectomized rats. Although all the rats showed strong correlations between periosteal bone formation and microdamage accumulation, the correlation levels were lower for the zoledronate-treated groups, potentially because of their lower levels of microdamage. The present study provides insights to further investigations of pharmaceutical treatments for osteoporosis and osteopenia. The same experimental concept can be applied in future studies on microdamage and drug testing.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada; Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| |
Collapse
|
2
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Cho JW, Kim BS, Yeo DH, Lim EJ, Sakong S, Lim J, Park S, Jeong YH, Jung TG, Choi H, Oh CW, Kim HJ, Park JW, Oh JK. 3D-printed, bioactive ceramic scaffold with rhBMP-2 in treating critical femoral bone defects in rabbits using the induced membrane technique. J Orthop Res 2021; 39:2671-2680. [PMID: 33580542 DOI: 10.1002/jor.25007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Although autogenous bone grafts are an optimal filling material for the induced membrane technique, limited availability and complications at the harvest site have created a need for alternative graft materials. We aimed to investigate the effect of an rhBMP-2-coated, 3D-printed, macro/microporous CaO-SiO2 -P2 O5 -B2 O3 bioactive ceramic scaffold in the treatment of critical femoral bone defects in rabbits using the induced membrane technique. A 15-mm segmental bone defect was made in the metadiaphyseal area of the distal femur of 14 rabbits. The defect was filled with polymethylmethacrylate cement and stabilized with a 2.0 mm locking plate. After the membrane matured for 4 weeks, the scaffold was implanted in two randomized groups: Group A (3D-printed bioceramic scaffold) and Group B (3D-printed, bioceramic scaffold with rhBMP-2). Eight weeks after implantation, the radiographic assessment showed that the healing rate of the defect was significantly higher in Group B (7/7, 100%) than in Group A (2/7, 29%). The mean volume of new bone formation around and inside the scaffold doubled in Group B compared to that in Group A. The mean static and dynamic stiffness were significantly higher in Group B. Histological examination revealed newly formed bone in both groups. Extensive cortical bone formation along the scaffold was found in Group B. Successful bone reconstruction in critical-sized bone defects could be obtained using rhBMP-2-coated, 3D-printed, macro/microporous bioactive ceramic scaffolds. This grafting material demonstrated potential as an alternative graft material in the induced membrane technique for reconstructing critical-sized bone defects.
Collapse
Affiliation(s)
- Jae-Woo Cho
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Beom-Soo Kim
- Department of Orthopaedic Surgery, Dongsan Medical Center, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Do-Hyun Yeo
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Eic Ju Lim
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Seungyeob Sakong
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Junyoung Lim
- 3D Innovation Center, R&D of 3D Printing Medical Devices on Bio-ceramics, CGBIO, Gyeonggi-do, Republic of Korea
| | - SungNam Park
- 3D Innovation Center, R&D of 3D Printing Medical Devices on Bio-ceramics, CGBIO, Gyeonggi-do, Republic of Korea
| | - Yong-Hoon Jeong
- Department of Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si, Republic of Korea
| | - Tae-Gon Jung
- Department of Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Chang-Wug Oh
- Department of Orthopedic Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hak Jun Kim
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong Woong Park
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong-Keon Oh
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hixon KR, McKenzie JA, Sykes DAW, Yoneda S, Hensley A, Buettmann EG, Zheng H, Skouteris D, McAlinden A, Miller AN, Silva MJ. Ablation of Proliferating Osteoblast Lineage Cells After Fracture Leads to Atrophic Nonunion in a Mouse Model. J Bone Miner Res 2021; 36:2243-2257. [PMID: 34405443 PMCID: PMC8719642 DOI: 10.1002/jbmr.4424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 01/19/2023]
Abstract
Nonunion is defined as the permanent failure of a fractured bone to heal, often necessitating surgical intervention. Atrophic nonunions are a subtype that are particularly difficult to treat. Animal models of atrophic nonunion are available; however, these require surgical or radiation-induced trauma to disrupt periosteal healing. These methods are invasive and not representative of many clinical nonunions where osseous regeneration has been arrested by a "failure of biology". We hypothesized that arresting osteoblast cell proliferation after fracture would lead to atrophic nonunion in mice. Using mice that express a thymidine kinase (tk) "suicide gene" driven by the 3.6Col1a1 promoter (Col1-tk), proliferating osteoblast lineage cells can be ablated upon exposure to the nucleoside analog ganciclovir (GCV). Wild-type (WT; control) and Col1-tk littermates were subjected to a full femur fracture and intramedullary fixation at 12 weeks age. We confirmed abundant tk+ cells in fracture callus of Col-tk mice dosed with water or GCV, specifically many osteoblasts, osteocytes, and chondrocytes at the cartilage-bone interface. Histologically, we observed altered callus composition in Col1-tk mice at 2 and 3 weeks postfracture, with significantly less bone and more fibrous tissue. Col1-tk mice, monitored for 12 weeks with in vivo radiographs and micro-computed tomography (μCT) scans, had delayed bone bridging and reduced callus size. After euthanasia, ex vivo μCT and histology showed failed union with residual bone fragments and fibrous tissue in Col1-tk mice. Biomechanical testing showed a failure to recover torsional strength in Col1-tk mice, in contrast to WT. Our data indicates that suppression of proliferating osteoblast-lineage cells for at least 2 weeks after fracture blunts the formation and remodeling of a mineralized callus leading to a functional nonunion. We propose this as a new murine model of atrophic nonunion. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - David A W Sykes
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Austin Hensley
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Dimitrios Skouteris
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA.,St. Louis Shriners Hospital Research Center, Shriners Hospital for Children, St. Louis, MO, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Haider IT, Lee M, Page R, Smith D, Edwards WB. Mechanical fatigue of whole rabbit-tibiae under combined compression-torsional loading is better explained by strained volume than peak strain magnitude. J Biomech 2021; 122:110434. [PMID: 33910082 DOI: 10.1016/j.jbiomech.2021.110434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
The mechanical fatigue behavior of whole bone is poorly defined, particularly for the combined loading modes that occur in vivo. The purpose of this study was to quantify the fatigue life of whole rabbit-tibiae under cyclic uniaxial compression and biaxial (compression and torsion) loading, and to explore the relationship between fatigue life and specimen-specific finite element (FE) predictions of stress/strain. Twelve tibiae were tested cyclically until failure across a range of uniaxial-compressive loads. Another twenty-two tibiae were separated into three groups and loaded biaxially; peak compressive load was constant in all three groups (50% ultimate force) but torsion was varied (0%, 25%, or 50% of ultimate torque). FE models with heterogeneous linear-elastic material properties were developed from computed tomography. We assessed peak stress/strain and stressed/strained volume based on principal stress/strain, as well as von Mises and pressure modified von Mises criteria. A logarithmic (r2 = 0.68; p < 0.001) relationship was observed between uniaxial-compressive load and fatigue life. Biaxial tests demonstrated that fatigue life decreased with superposed torsion (p = 0.034). Strained volume, based on a maximum principal strain or pressure modified von Mises strain criteria, were strong predictors of fatigue life under both uniaxial (r2 = 0.73-0.82) and biaxial (r2 = 0.59-0.60) loads, and these outperformed equivalent peak stress- and strain-based measures. Our findings highlight the importance of evaluating strain distributions, rather than peak stress or strain, to predict the fatigue behavior or whole bone, which has important implications for the study of stress fracture.
Collapse
Affiliation(s)
- Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Mattea Lee
- Human Performance Laboratory, Faculty of Kinesiology; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; School of Kinesiology, Western University, London, Ontario, Canada
| | - Rebecca Page
- Human Performance Laboratory, Faculty of Kinesiology; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Donovan Smith
- Human Performance Laboratory, Faculty of Kinesiology; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Coates BA, Silva MJ. An animal trial to study damage and repair in ovariectomized rabbits. J Biomech 2020; 108:109866. [PMID: 32635993 PMCID: PMC10095491 DOI: 10.1016/j.jbiomech.2020.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 01/28/2023]
Abstract
Microdamage accumulates in bone matrix and is repaired through bone remodeling. Conditions such as osteoporosis and treatment with antiresorptive bisphosphonates can influence this remodeling process. In order to study microdamage accrual and repair in the context of osteoporosis and osteon structures, we set out to modify the rabbit forelimb fatigue model. New Zealand White rabbits (N = 43, 10 months old) received either ovariectomy (OVX) or sham surgeries and were used for forelimb fatigue loading. OVX increased fluorochrome labeling of intracortical and periosteal bone of the ulna, without changes in bone mass. Monotonic and cyclic loading of the forelimb did not reveal any statistical differences between stiffness, ultimate force, or displacement to failure between sham and OVX rabbits. Two levels of fatigue loading, chosen to represent "low" and "moderate" fatigue (25% and 40% of total displacement to failure, respectively), were used on OVX forelimbs to examine microdamage creation. However, neither group showed increased damage burden as compared to non-loaded controls. Following fatigue loading rabbit ulnae had increased intracortical remodeling and periosteal lamellar bone formation in "moderate" fatigue limbs, although no basic multicellular units or microdamage-targeted remodeling was observed. In summary, we adapted the rabbit forelimb fatigue model to accommodate OVX animals. However, loading parameters that could induce repeatable microdamage burden were not identified. Thus, while increased intracortical remodeling and periosteal bone formation were induced by our fatigue loading regimen, this preliminary study did not establish conditions to allow future study of the interactions between microdamage accrual and repair.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States.
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States
| |
Collapse
|
7
|
Buettmann EG, McKenzie JA, Migotsky N, Sykes DA, Hu P, Yoneda S, Silva MJ. VEGFA From Early Osteoblast Lineage Cells (Osterix+) Is Required in Mice for Fracture Healing. J Bone Miner Res 2019; 34:1690-1706. [PMID: 31081125 PMCID: PMC6744295 DOI: 10.1002/jbmr.3755] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Bone formation via intramembranous and endochondral ossification is necessary for successful healing after a wide range of bone injuries. The pleiotropic cytokine, vascular endothelial growth factor A (VEGFA) has been shown, via nonspecific pharmacologic inhibition, to be indispensable for angiogenesis and ossification following bone fracture and cortical defect repair. However, the importance of VEGFA expression by different cell types during bone healing is not well understood. We sought to determine the role of VEGFA from different osteoblast cell subsets following clinically relevant models of bone fracture and cortical defect. Ubiquitin C (UBC), Osterix (Osx), or Dentin matrix protein 1 (Dmp1) Cre-ERT2 mice (male and female) containing floxed VEGFA alleles (VEGFAfl/fl ) were either given a femur full fracture, ulna stress fracture, or tibia cortical defect at 12 weeks of age. All mice received tamoxifen continuously starting 2 weeks before bone injury and throughout healing. UBC Cre-ERT2 VEGFAfl/fl (UBC cKO) mice, which were used to mimic nonspecific inhibition, had minimal bone formation and impaired angiogenesis across all bone injury models. UBC cKO mice also exhibited impaired periosteal cell proliferation during full fracture, but not stress fracture repair. Osx Cre-ERT2 VEGFAfl/fl (Osx cKO) mice, but not Dmp1 Cre-ERT2 VEGFAfl/fl (Dmp1 cKO) mice, showed impaired periosteal bone formation and angiogenesis in models of full fracture and stress fracture. Neither Osx cKO nor Dmp1 cKO mice demonstrated significant impairments in intramedullary bone formation and angiogenesis following cortical defect. These data suggest that VEGFA from early osteolineage cells (Osx+), but not mature osteoblasts/osteocytes (Dmp1+), is critical at the time of bone injury for rapid periosteal angiogenesis and woven bone formation during fracture repair. Whereas VEGFA from another cell source, not from the osteoblast cell lineage, is necessary at the time of injury for maximum cortical defect intramedullary angiogenesis and osteogenesis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - David Aw Sykes
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Pei Hu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Edwards WB. Modeling Overuse Injuries in Sport as a Mechanical Fatigue Phenomenon. Exerc Sport Sci Rev 2018; 46:224-231. [DOI: 10.1249/jes.0000000000000163] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Püschel TA, Marcé-Nogué J, Gladman JT, Bobe R, Sellers WI. Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology. J R Soc Interface 2018; 15:rsif.2018.0520. [PMID: 30257926 PMCID: PMC6170775 DOI: 10.1098/rsif.2018.0520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/28/2018] [Indexed: 11/12/2022] Open
Abstract
The talus is one of the most commonly preserved post-cranial elements in the platyrrhine fossil record. Talar morphology can provide information about postural adaptations because it is the anatomical structure responsible for transmitting body mass forces from the leg to the foot. The aim of this study is to test whether the locomotor behaviour of fossil Miocene platyrrhines could be inferred from their talus morphology. The extant sample was classified into three different locomotor categories and then talar strength was compared using finite-element analysis. Geometric morphometrics were used to quantify talar shape and to assess its association with biomechanical strength. Finally, several machine-learning (ML) algorithms were trained using both the biomechanical and morphometric data from the extant taxa to infer the possible locomotor behaviour of the Miocene fossil sample. The obtained results show that the different locomotor categories are distinguishable using either biomechanical or morphometric data. The ML algorithms categorized most of the fossil sample as arboreal quadrupeds. This study has shown that a combined approach can contribute to the understanding of platyrrhine talar morphology and its relationship with locomotion. This approach is likely to be beneficial for determining the locomotor habits in other fossil taxa.
Collapse
Affiliation(s)
- Thomas A Püschel
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Jordi Marcé-Nogué
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany.,Institut Català de Paleontologia M. Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Justin T Gladman
- Department of Engineering, Shared Materials Instrumentation Facility (SMIF), Duke University, Durham, NC, USA
| | - René Bobe
- Departamento de Antropología, Universidad de Chile, Santiago, Chile.,Institute of Cognitive and Evolutionary Anthropology, School of Anthropology, University of Oxford, Oxford, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
10
|
Bai L, Xu K, Li D, Ta D, Le LH, Wang W. Fatigue evaluation of long cortical bone using ultrasonic guided waves. J Biomech 2018; 77:83-90. [PMID: 29961583 DOI: 10.1016/j.jbiomech.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Bone fatigue fracture is a progressive disease due to stress concentration. This study aims to evaluate the long bone fatigue damage using the ultrasonic guided waves. Two-dimensional finite-difference time-domain method was employed to simulate the ultrasonic guided wave propagation in the long bone under different elastic modulus. The experiment was conducted on a 3.8 mm-thick bovine bone plate. The phase velocities of two fundamental guided modes, A1 and S1, were measured by using the axial transmission technique. Simulation shows that the phase velocities of guided modes A1 and S1 decrease with the increasing of the fatigue damage. After 20,000 cycles of fatigue loading on the bone plate, the average phase velocities of A1 and S1 modes were 6.6% and 5.3% respectively, lower than those of the intact bone. The study suggests that ultrasonic guided waves can be potentially used to evaluate the fatigue damage in long bones.
Collapse
Affiliation(s)
- Liang Bai
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Kailiang Xu
- Institut Langevin, ESPCI Paris, CNRS UMR 7587, INSERM U979, 17 Rue Moreau, 75012 Paris, France.
| | - Dan Li
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Weiqi Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng 2018; 2:62-71. [DOI: 10.1038/s41551-017-0183-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
|
12
|
Hunckler MD, Chu ED, Baumann AP, Curtis TE, Ravosa MJ, Allen MR, Roeder RK. The fracture toughness of small animal cortical bone measured using arc-shaped tension specimens: Effects of bisphosphonate and deproteinization treatments. Bone 2017; 105:67-74. [PMID: 28826844 DOI: 10.1016/j.bone.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023]
Abstract
Small animal models, and especially transgenic models, have become widespread in the study of bone mechanobiology and metabolic bone disease, but test methods for measuring fracture toughness on multiple replicates or at multiple locations within a single small animal bone are lacking. Therefore, the objective of this study was to develop a method to measure cortical bone fracture toughness in multiple specimens and locations along the diaphysis of small animal bones. Arc-shaped tension specimens were prepared from the mid-diaphysis of rabbit ulnae and loaded to failure to measure the radial fracture toughness in multiple replicates per bone. The test specimen dimensions, crack length, and maximum load met requirements for measuring the plane strain fracture toughness. Experimental groups included a control group, bisphosphonate treatment group, and an ex vivo deproteinization treatment following bisphosphonate treatment (5 rabbits/group and 15 specimens/group). The fracture toughness of ulnar cortical bone from rabbits treated with zoledronic acid for six months exhibited no difference compared with the control group. Partially deproteinized specimens exhibited significantly lower fracture toughness compared with both the control and bisphosphonate treatment groups. The deproteinization treatment increased tissue mineral density (TMD) and resulted in a negative linear correlation between the measured fracture toughness and TMD. Fracture toughness measurements were repeatable with a coefficient of variation of 12-16% within experimental groups. Retrospective power analysis of the control and deproteinization treatment groups indicated a minimum detectable difference of 0.1MPa·m1/2. Therefore, the overall results of this study suggest that arc-shaped tension specimens offer an advantageous new method for measuring the fracture toughness in small animal bones.
Collapse
Affiliation(s)
- Michael D Hunckler
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ethan D Chu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew P Baumann
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tyler E Curtis
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew J Ravosa
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
13
|
Birkhold AI, Razi H, Duda GN, Checa S, Willie BM. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response. Calcif Tissue Int 2017; 100:255-270. [PMID: 27999894 DOI: 10.1007/s00223-016-0217-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/02/2016] [Indexed: 01/27/2023]
Abstract
Bone has an adaptive capacity to maintain structural integrity. However, there seems to be a heterogeneous cortical (re)modeling response to loading at different regions within the same bone, which may lead to inconsistent findings since most studies analyze only one region. It remains unclear if the local mechanical environment is responsible for this heterogeneous response and whether both formation and resorption are affected. Thus, we compared the formation and resorptive response to in vivo loading and the strain environment at two commonly analyzed regions in the mouse tibia, the mid-diaphysis and proximal metaphysis. We quantified cortical surface (re)modeling by tracking changes between geometrically aligned consecutive in vivo micro-tomography images (time lapse 15 days). We investigated the local mechanical strain environment using finite element analyses. The relationship between mechanical stimuli and surface (re)modeling was examined by sub-dividing the mid-diaphysis and proximal metaphysis into 32 sub-regions. In response to loading, metaphyseal cortical bone (re)modeled predominantly at the periosteal surface, whereas diaphyseal (re)modeling was more pronounced at the endocortical surface. Furthermore, different set points and slopes of the relationship between engendered strains and remodeling response were found for the endosteal and periosteal surfaces at the metaphyseal and diaphyseal regions. Resorption was correlated with strain at the endocortical, but not the periosteal surfaces, whereas, formation correlated with strain at all surfaces, except at the metaphyseal periosteal surface. Therefore, besides mechanical stimuli, other non-mechanical factors are likely driving regional differences in adaptation. Studies investigating adaptation to loading or other treatments should consider region-specific (re)modeling differences.
Collapse
Affiliation(s)
- Annette I Birkhold
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Continuum Biomechanics and Mechanobiology Research Group, Institute of Applied Mechanics, University of Stuttgart, Stuttgart, Germany
| | - Hajar Razi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Pediatric Surgery, McGill University, Research Centre, Shriners Hospital for Children-Canada, 1003 Decarie Blvd, Montreal, H4A 0A9, Canada.
| |
Collapse
|