1
|
Cornish BM, Diamond LE, Saxby DJ, Xia Z, Pizzolato C. Real-Time Calibration-Free Musculotendon Kinematics for Neuromusculoskeletal Models. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3486-3495. [PMID: 39240743 DOI: 10.1109/tnsre.2024.3455262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Neuromusculoskeletal (NMS) models enable non-invasive estimation of clinically important internal biomechanics. A critical part of NMS modelling is the estimation of musculotendon kinematics, which comprise musculotendon unit lengths, moment arms, and lines of action. Musculotendon kinematics, which are partially dependent on joint angles, define the non-linear mapping of muscle forces to joint moments and contact forces. Currently, real-time computation of musculotendon kinematics requires creation of a per-individual surrogate model. The computational speed and accuracy of these surrogates degrade with increasing number of coordinates. We developed a feed-forward neural network that completely encodes musculotendon kinematics of a target model across a wide anthropometric range, enabling accurate real-time estimates of musculotendon kinematics without need for a priori creation of a per-individual surrogate model. Compared to reference, the neural network had median normalized errors ~0.1% for musculotendon lengths, <0.4% for moment arms, and <0.10° for line of action orientations. The neural network was employed within an electromyogram-informed NMS model to calculate hip contact forces, demonstrating little difference (normalized root mean square error 1.23±0.15 %) compared to using reference musculotendon kinematics. Finally, execution time was <0.04 ms per frame and constant for increasing number of model coordinates. Our approach to musculoskeletal kinematics may facilitate deployment of complex real-time NMS modelling in computer vision or wearable sensors applications to realize biomechanics monitoring, rehabilitation, and disease management outside the research laboratory.
Collapse
|
2
|
Seyres M, Postans N, Freeman R, Pandyan A, Chadwick EK, Philp F. Children and adolescents with all forms of shoulder instability demonstrate differences in their movement and muscle activity patterns when compared to age- and sex-matched controls. J Shoulder Elbow Surg 2024; 33:e478-e491. [PMID: 38467183 DOI: 10.1016/j.jse.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
HYPOTHESIS AND BACKGROUND Shoulder instability (SI) is a complex impairment, and identifying biomarkers that differentiate subgroups is challenging. Children and adolescents with SI (irrespective of etiology) have differences in their movement and muscle activity profiles compared to age- and sex-matched controls (2-tailed). There are limited fundamental movement and muscle activity data for identifying different mechanisms for SI in children and adolescents that can inform subgrouping and treatment allocation. METHODS Young people between 8 and 18 years were recruited into 2 groups of SI and age- and sex-matched controls (CG). All forms of SI were included, and young people with coexisting neurologic pathologies or deficits were excluded. Participants attended a single session and carried out 4 unweighted and 3 weighted tasks in which their movements and muscle activity was measured using 3-dimensional (3D) movement analysis and surface electromyography (sEMG). Statistical parametric mapping was used to identify between-group differences. RESULTS Data were collected for 30 young people (15 SI [6 male, 9 female] and 15 CG [8 male, 7 female]). The mean (standard deviation) age of the participants was 13.6 years (3.0). The SI group demonstrated consistently more protracted and elevated sternoclavicular joint positions during all movements. Normalized muscle activity in latissimus dorsi was lower in the SI group and had the most statistically significant differences across all movements. Where differences were identified, the SI group also had increased normalized activity of their middle trapezius, posterior deltoid, and biceps muscles but decreased activity of their latissimus dorsi, triceps and anterior deltoid muscles compared with the CG group. No statistically significant differences were found for the pectoralis major across any movements. Weighted tasks produced fewer differences in muscle activity patterns compared with unweighted tasks. DISCUSSION AND CONCLUSION Young people with SI may adapt their movements to minimize glenohumeral joint instability. This was demonstrated by reduced variability in acromioclavicular and sternoclavicular joint angles, adoption of different movement strategies across the same joints, and increased activity of the scapular stabilizing muscles, despite achieving similar arm positions to the CG. Young people with SI demonstrated consistent differences in their muscle activity and movement patterns. Consistently observed differences at the shoulder girdle included increased sternoclavicular protraction and elevation accompanied by increased normalized activity of the posterior scapula-stabilizing muscles. Existing methods of measurement may be used to inform clinical decision making; however, further work is needed to evaluate the prognostic and clinical utility of derived 3D and sEMG data for informing decision making within SI.
Collapse
Affiliation(s)
- Martin Seyres
- School of Pharmacy and Bioengineering, Keele University, Keele, UK; School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Neil Postans
- ORLAU, Robert Jones and Agnes Hunt Orthopaedic Hospital Foundation Trust, Oswestry, UK
| | - Robert Freeman
- ORLAU, Robert Jones and Agnes Hunt Orthopaedic Hospital Foundation Trust, Oswestry, UK
| | - Anand Pandyan
- Faculty of Health and Social Sciences, Bournemouth University, Poole, UK
| | | | - Fraser Philp
- School of Health Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Tümer D, Arman Y, Havıtçıoğlu H. The effects of tears in infraspinatus on other rotator cuff constituents. J Mech Behav Biomed Mater 2024; 157:106600. [PMID: 38870586 DOI: 10.1016/j.jmbbm.2024.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/02/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
The rotator cuff tear effects on glenohumeral joint tissues, such as superior labrum anterior-posterior (SLAP) lesions, have been studied experimentally or numerically in various cases. In relation to these studies, and as a novel feature of our study, infraspinatus (INF) muscle tear effects on other muscle force variations and stress and strain increases on glenoid labrum (GL), glenoid cartilage (GC) tissues, and a SLAP pathology were investigated. The ITK-SNAP Software (ISS) was used to segment the humerus and glenoid bone. The surface entities were segmented and exported to SolidWorks 2019, where the finite element model (FEM) was completed. Static optimizations of the muscle forces were calculated using a generic model in OpenSim 4.1 for the 0-3.88 s time interval to perform our finite element analyses (FEAs) in ANSYS 19.3 for the intact, partial torn, and fully torn INF muscle. The FEAs were also conducted for the specified time interval. The stress and strain increases on the GL, and GC tissues were determined to be critical when compared with yield strengths. In the case of fully torn INF, the GL and cartilage interfacial principal stress was calculated to be 3.3856 MPa. In the case of the fully torn INF, the principal stress that occurred on the GC tissue was calculated to be 42.465 MPa. In the case of the intact INF, the principal stress that occurred on the labrum was obtained as 4.257 MPa. These results showed that there was no detachment or disorder on the designated tissues caused by the INF muscle tear when the shoulder functioned at 60° of external rotation at 11° of abduction. Nonetheless, a minor amount of external force could cause severe pathological effects on the specified tissues.
Collapse
Affiliation(s)
- Devrim Tümer
- Department of Mechanical Engineering, Ege University, Bornova, Izmir, 35100, Türkiye.
| | - Yusuf Arman
- Department of Mechanical Engineering, Dokuz Eylül University, Buca, Izmir, 35390, Türkiye.
| | - Hasan Havıtçıoğlu
- Department of Orthopedics and Traumatology, Dokuz Eylül University, Balcova, Izmir, 35340, Türkiye.
| |
Collapse
|
4
|
Sipes GC, Lee M, Halloran KM, Rice I, Kersh ME. Kinematics-Based Predictions of External Loads during Handcycling. SENSORS (BASEL, SWITZERLAND) 2024; 24:5297. [PMID: 39204990 PMCID: PMC11359576 DOI: 10.3390/s24165297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
The increased risk of cardiovascular disease in people with spinal cord injuries motivates work to identify exercise options that improve health outcomes without causing risk of musculoskeletal injury. Handcycling is an exercise mode that may be beneficial for wheelchair users, but further work is needed to establish appropriate guidelines and requires assessment of the external loads. The goal of this research was to predict the six-degree-of-freedom external loads during handcycling from data similar to those which can be measured from inertial measurement units (segment accelerations and velocities) using machine learning. Five neural network models and two ensemble models were compared against a statistical model. A temporal convolutional network (TCN) yielded the best predictions. Predictions of forces and moments in-plane with the crank were the most accurate (r = 0.95-0.97). The TCN model could predict external loads during activities of different intensities, making it viable for different exercise protocols. The ability to predict the loads associated with forward propulsion using wearable-type data enables the development of informed exercise guidelines.
Collapse
Affiliation(s)
- Griffin C. Sipes
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (G.C.S.); (M.L.); (K.M.H.)
| | - Matthew Lee
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (G.C.S.); (M.L.); (K.M.H.)
| | - Kellie M. Halloran
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (G.C.S.); (M.L.); (K.M.H.)
| | - Ian Rice
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (G.C.S.); (M.L.); (K.M.H.)
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Genter J, Croci E, Müller AM, Mündermann A, Baumgartner D. Influence of Critical Shoulder Angle and Rotator Cuff Tear Type on Load-Induced Glenohumeral Biomechanics: A Sawbone Simulator Study. Appl Bionics Biomech 2024; 2024:4624007. [PMID: 38983835 PMCID: PMC11233187 DOI: 10.1155/2024/4624007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Glenohumeral (GH) biomechanics after rotator cuff (RC) tears are not fully understood. The purpose of our study was to determine if the critical shoulder angle (CSA), type of RC tears, and level of weight bearing increase GH translation, instability based on the instability ratio, muscle forces and joint reaction force (JRF), and shifts the center of force (CoF) superiorly. A GH simulator with muscle-mimicking cable systems was used to simulate 30° abduction in the scapular plane. A Sawbone humerus and five specimen-specific scapular anthropometries were used to test six types of RC tears, three weight-bearing loads, and the native and adjusted (to different CSAs) deltoid origin sites. Linear mixed effects models (CSA, RC tear type, and weight bearing) with random effects (specimen and sex) were used to assess differences in GH biomechanics. With increasing CSA, GH translation increased, JRF decreased, and the CoF position was more inferior. RC tears did not significantly alter GH translation but shifted the CoF position superiorly, close to where glenoid erosion occurs in patients with RC tears with secondary osteoarthritis. Weight bearing significantly increased GH translation and JRF. RC and deltoid muscle forces increased with the presence of RC tears and increased weight bearing. The remaining RC muscles of intact tendons compensated for the torn RC tendons but not for the altered CoF position. GH translation remained comparable to shoulders with intact RC. These findings highlight the importance of early detection, clinical management, and targeted rehabilitation strategies for patients with RC tears.
Collapse
Affiliation(s)
- Jeremy Genter
- IMES Institute of Mechanical Systems Zurich University of Applied Sciences ZHAW, Winterthur, Switzerland
- Department of Biomedical Engineering University of Basel, Basel, Switzerland
- Department of Orthopaedics and Traumatology University Hospital Basel, Basel, Switzerland
| | - Eleonora Croci
- Department of Biomedical Engineering University of Basel, Basel, Switzerland
- Department of Orthopaedics and Traumatology University Hospital Basel, Basel, Switzerland
| | - Andreas M Müller
- Department of Orthopaedics and Traumatology University Hospital Basel, Basel, Switzerland
| | - Annegret Mündermann
- Department of Biomedical Engineering University of Basel, Basel, Switzerland
- Department of Orthopaedics and Traumatology University Hospital Basel, Basel, Switzerland
- Department of Clinical Research University of Basel, Basel, Switzerland
| | - Daniel Baumgartner
- IMES Institute of Mechanical Systems Zurich University of Applied Sciences ZHAW, Winterthur, Switzerland
| |
Collapse
|
6
|
Fox A, Ernstbrunner L, Henze J, Page RS, Ackland DC. The moment arms and lines of action of subscapularis after the Latarjet procedure. J Orthop Res 2024; 42:1159-1169. [PMID: 38159105 DOI: 10.1002/jor.25773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The Latarjet procedure is an established surgical treatment for recurrent glenohumeral joint instability with glenoid bone loss. Intraoperatively, the conjoint tendon and its attachement on the coracoid bone graft is routed through a split in subscapularis where the graft is fixed to and augments the anteroinferior glenoid. The objective of this in vitro study was to quantify the influence of glenohumeral joint position and conjoint tendon force on the lines of action and moment arms of subscapularis muscle sub-regions after Latarjet surgery. Eight fresh-frozen, entire upper extremities were mounted onto a testing apparatus, and a cable-pulley system was used to apply physiological muscle loading to the major shoulder muscles. The lines of action and moment arms of four subregions of subscapularis (superior, mid-superior, mid-inferior, and inferior) were quantified radiographically with the conjoint tendon unloaded and loaded while the shoulder was in (i) 0° abduction (ii) 90° abduction (iii) 90° abduction and full external rotation (ABER), and (iv) the apprehension position, defined as ABER with 30° horizontal extension. Conjoint tendon loading after Latarjet surgery significantly increased the inferior inclination of the lines of action of the mid-inferior and inferior subregions of subscapularis in the scapular plane in ABER and apprehension positions (p < 0.001), as well as decreased the horizontal flexion moment arm of the inferior subscapularis (p = 0.040). Increased subscapularis inferior inclination may ultimately increase inferior joint shear potential, while smaller horizontal flexion leverage may reduce joint flexion capacity. The findings have implications for Latarjet surgical planning and postoperative rehabilitation prescription.
Collapse
Affiliation(s)
- Aaron Fox
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Lukas Ernstbrunner
- Department of Orthopaedic Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Janina Henze
- Department of Orthopaedic Surgery, Barwon Health, Geelong, Victoria, Australia
| | - Richard S Page
- Department of Orthopaedic Surgery, Barwon Health, Geelong, Victoria, Australia
- Barwon Centre for Orthopaedic Research and Education (B-CORE), School of Medicine, Deakin University, Geelong, Australia
| | - David C Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Oenning S, Wermers J, Taenzler S, Michel PA, Raschke MJ, Christoph Katthagen J. Glenoid Concavity Affects Anterior Shoulder Stability in an Active-Assisted Biomechanical Model. Orthop J Sports Med 2024; 12:23259671241253836. [PMID: 38881852 PMCID: PMC11179473 DOI: 10.1177/23259671241253836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 06/18/2024] Open
Abstract
Background The treatment of bony glenoid defects after anteroinferior shoulder dislocation currently depends on the amount of glenoid bone loss (GBL). Recent studies have described the glenoid concavity as an essential factor for glenohumeral stability. The role of glenoid concavity in the presence of soft tissue and muscle forces is still unknown. Hypothesis Glenoid concavity would have a major impact on glenohumeral stability in an active-assisted biomechanical model including soft tissue and the rotator cuff's compression forces. Study Design Controlled laboratory study. Methods In 8 human shoulder specimens, individual coordinate systems were calculated based on anatomic landmarks. The glenoid concavity was measured biomechanically and based on computed tomography. Static load was applied to the rotator cuff tendons and the deltoid muscle. In a robotic test setup, anteriorly directed force was applied to the humeral head until translation of 5 mm (Nant) was achieved. Nant was used as a parameter indicating shoulder stability. This was performed in the following testing stages: (1) intact joint, (2) labral lesion, (3) 10% GBL, and (4) 20% GBL. The 8 specimens were divided equally into 2 subgroups (low concavity [LC] versus high concavity [HC]), with 4 specimens each, according to the previously measured concavity. Results Anterior glenohumeral stability was highly correlated with the native glenoid concavity (R 2 = 0.8). In the testing stages 1 to 3, we found a significantly higher mean stability in the HC subgroup compared with the LC subgroup (P≤ .0142). The HC subgroup still showed higher absolute Nant values with 20% GBL; however, there was no significant difference from the LC subgroup. The loss of stability in 20% GBL was correlated with the initial concavity (R 2 = 0.86). Thus, a higher loss of Nant in the HC subgroup was observed (P = .0049). Conclusion In an active-assisted model with intact soft tissue surrounding and muscular compression forces, the glenoid concavity correlates with shoulder stability. In bony defects, loss of concavity is an essential factor causing instability. Due to their significantly higher native stability, glenoids with HC can tolerate a higher amount of GBL. Clinical Relevance Glenoid concavity should be considered in an individualized treatment of bony glenoid defects. Further studies are required to establish reference values and develop therapeutic algorithms.
Collapse
Affiliation(s)
- Sebastian Oenning
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Jens Wermers
- Faculty of Engineering Physics, FH Muenster, Muenster, Germany
| | - Stefanie Taenzler
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Philipp A Michel
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - J Christoph Katthagen
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
8
|
Assila N, Begon M, Duprey S. Finite Element Model of the Shoulder with Active Rotator Cuff Muscles: Application to Wheelchair Propulsion. Ann Biomed Eng 2024; 52:1240-1254. [PMID: 38376768 DOI: 10.1007/s10439-024-03449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The rotator cuff is prone to injury, remarkably so for manual wheelchair users. To understand its pathomechanisms, finite element models incorporating three-dimensional activated muscles are needed to predict soft tissue strains during given tasks. This study aimed to develop such a model to understand pathomechanisms associated with wheelchair propulsion. We developed an active muscle model associating a passive fiber-reinforced isotropic matrix with an activation law linking calcium ion concentration to tissue tension. This model was first evaluated against known physiological muscle behavior; then used to activate the rotator cuff during a wheelchair propulsion cycle. Here, experimental kinematics and electromyography data was used to drive a shoulder finite element model. Finally, we evaluated the importance of muscle activation by comparing the results of activated and non-activated rotator cuff muscles during both propulsion and isometric contractions. Qualitatively, the muscle constitutive law reasonably reproduced the classical Hill model force-length curve and the behavior of a transversally loaded muscle. During wheelchair propulsion, the deformation and fiber stretch of the supraspinatus muscle-tendon unit pointed towards the possibility for this tendon to develop tendinosis due to the multiaxial loading imposed by the kinematics of propulsion. Finally, differences in local stretch and positions of the lines of action between activated and non-activated models were only observed at activation levels higher than 30%. Our novel finite element model with active muscles is a promising tool for understanding the pathomechanisms of the rotator cuff for various dynamic tasks, especially those with high muscle activation levels.
Collapse
Affiliation(s)
- Najoua Assila
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada.
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France.
| | - Mickaël Begon
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada
| | - Sonia Duprey
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France
| |
Collapse
|
9
|
Genter J, Croci E, Oberreiter B, Eckers F, Bühler D, Gascho D, Müller AM, Mündermann A, Baumgartner D. The influence of rotator cuff tear type and weight bearing on shoulder biomechanics in an ex vivo simulator experiment. J Biomech 2024; 166:112055. [PMID: 38522362 DOI: 10.1016/j.jbiomech.2024.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Glenohumeral biomechanics after rotator cuff (RC) tears have not been fully elucidated. This study aimed to investigate the muscle compensatory mechanism in weight-bearing shoulders with RC tears and asses the induced pathomechanics (i.e., glenohumeral translation, joint instability, center of force (CoF), joint reaction force). An experimental, glenohumeral simulator with muscle-mimicking cable system was used to simulate 30° scaption motion. Eight fresh-frozen shoulders were prepared and mounted in the simulator. Specimen-specific scapular anthropometry was used to test six RC tear types, with intact RC serving as the control, and three weight-bearing loads, with the non-weight-bearing condition serving as the control. Glenohumeral translation was calculated using instantaneous helical axis. CoF, muscle forces, and joint reaction forces were measured using force sensors integrated into the simulator. Linear mixed effects models (RC tear type and weight-bearing) with random effects (specimen and sex) were used to assess differences in glenohumeral biomechanics. RC tears did not change the glenohumeral translation (p > 0.05) but shifted the CoF superiorly (p ≤ 0.005). Glenohumeral translation and joint reaction forces increased with increasing weight bearing (p < 0.001). RC and deltoid muscle forces increased with the presence of RC tears (p ≤ 0.046) and increased weight bearing (p ≤ 0.042). The synergistic muscles compensated for the torn RC tendons, and the glenohumeral translation remained comparable to that for the intact RC tendons. However, in RC tears, the more superior CoF was close to where glenoid erosion occurs in RC tear patients with secondary osteoarthritis. These findings underscore the importance of early detection and precise management of RC tears.
Collapse
Affiliation(s)
- Jeremy Genter
- IMES Institute of Mechanical Systems, Zurich University of Applied Sciences ZHAW, Winterthur, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland.
| | - Eleonora Croci
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Birgit Oberreiter
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Franziska Eckers
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Dominik Bühler
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Dominic Gascho
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas M Müller
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Annegret Mündermann
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Daniel Baumgartner
- IMES Institute of Mechanical Systems, Zurich University of Applied Sciences ZHAW, Winterthur, Switzerland
| |
Collapse
|
10
|
Silvestros P, Athwal GS, Giles JW. Scapular morphology variation affects reverse total shoulder arthroplasty biomechanics. A predictive simulation study using statistical and musculoskeletal shoulder models. J Orthop Res 2024. [PMID: 38341683 DOI: 10.1002/jor.25801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/11/2023] [Accepted: 01/20/2024] [Indexed: 02/13/2024]
Abstract
Reverse total shoulder arthroplasty (RTSA) accounts for over half of shoulder replacement surgeries. At present, the optimal position of RTSA components is unknown. Previous biomechanical studies have investigated the effect of construct placement to quantify mobility, stability and functionality postoperatively. While studies have provided valuable information on construct design and surgical placement, they have not systematically evaluated the importance of scapular morphology on biomechanical outcomes. The aim of this study was to assess the influence of scapular morphology variation on RTSA biomechanics using statistical models, musculoskeletal modeling and predictive simulation. The scapular geometry of a musculoskeletal model was altered across six modes of variation at four levels (±1 and ±3 SD) from a clinically derived statistical shape model. For each model, a standardized virtual surgery was performed to place RTSA components in the same relative position on each model then implemented in 50 predictive simulations of upward and lateral reaching tasks. Results showed morphology affected functional changes in the deltoid moment arms and recruitment for the two tasks. Variation of the anatomy that reduced the efficiency of the deltoids showed increased levels of muscle force production, joint load magnitude and shear. These findings suggest that scapular morphology plays an important role in postoperative biomechanical function of the shoulder with an implanted RTSA. Furthermore a "one-size-fits-all" approach for construct surgical placement may lead to suboptimal patient outcomes across a clinical population. Patient glenoid as well as scapular anatomy may need to be carefully considered when planning RTSA to optimize postoperative success.
Collapse
Affiliation(s)
- Pavlos Silvestros
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada
| | - George S Athwal
- Division of Shoulder and Elbow Surgery, Department of Orthopaedic Surgery, Roth/McFarlane Hand and Upper Limb Centre, London, Ontario, Canada
| | - Joshua W Giles
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
11
|
Votava J, Kratochvíl A, Daniel M. Intra and inter-rater variability in the construction of patient-specific musculoskeletal model. Gait Posture 2024; 108:195-198. [PMID: 38103325 DOI: 10.1016/j.gaitpost.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Variations observed in biomechanical studies might be attributed to errors made by operators during the construction of musculoskeletal models, rather than being solely attributed to patient-specific geometry. RESEARCH QUESTION What is the impact of operator errors on the construction of musculoskeletal models, and how does it affect the estimation of muscle moment arms and hip joint reaction forces? METHODS Thirteen independent operators participated in defining the muscle model, while a single operator performed 13 repetitions to define the muscle model based on 3D bone geometry. For each model, the muscle moment arms relative to the hip joint center of rotation was evaluated. Additionally, the hip joint reaction force during one-legged stance was assessed using static inverse optimization. RESULTS The results indicated high levels of consistency, as evidenced by the intra- rater and inter-rater agreement measured by the Intraclass Correlation Coefficient (ICC), which yielded values of 0.95 and 0.99, respectively. However, the estimated muscle moment arms exhibited an error of up to 16 mm compared to the reference musculoskeletal model. It was found that muscles attached to prominent anatomical landmarks were specified with greater accuracy than those attached over larger areas. Furthermore, the variability in estimated moment arms contributed to variations of up to 12% in the hip joint reaction forces. SIGNIFICANCE Both moment arm and muscle force demonstrated significantly lower variability when assessed by a single operator, suggesting the preference for employing a single operator in the creation of musculoskeletal models for clinical biomechanical studies.
Collapse
Affiliation(s)
- Jan Votava
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16000 Prague, Czechia
| | - Adam Kratochvíl
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16000 Prague, Czechia
| | - Matej Daniel
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16000 Prague, Czechia.
| |
Collapse
|
12
|
Pan F, Khoo K, Maso Talou GD, Song F, McGhee D, Doyle AJ, Nielsen PMF, Nash MP, Babarenda Gamage TP. Quantifying changes in shoulder orientation between the prone and supine positions from magnetic resonance imaging. Clin Biomech (Bristol, Avon) 2024; 111:106157. [PMID: 38103526 DOI: 10.1016/j.clinbiomech.2023.106157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Predicting breast tissue motion using biomechanical models can provide navigational guidance during breast cancer treatment procedures. These models typically do not account for changes in posture between procedures. Difference in shoulder position can alter the shape of the pectoral muscles and breast. A greater understanding of the differences in the shoulder orientation between prone and supine could improve the accuracy of breast biomechanical models. METHODS 19 landmarks were placed on the sternum, clavicle, scapula, and humerus of the shoulder girdle in prone and supine breast MRIs (N = 10). These landmarks were used in an optimization framework to fit subject-specific skeletal models and compare joint angles of the shoulder girdle between these positions. FINDINGS The mean Euclidean distance between joint locations from the fitted skeletal model and the manually identified joint locations was 15.7 mm ± 2.7 mm. Significant differences were observed between prone and supine. Compared to supine position, the shoulder girdle in the prone position had the lateral end of the clavicle in more anterior translation (i.e., scapula more protracted) (P < 0.05), the scapula in more protraction (P < 0.01), the scapula in more upward rotation (associated with humerus elevation) (P < 0.05); and the humerus more elevated (P < 0.05) for both the left and right sides. INTERPRETATION Shoulder girdle orientation was found to be different between prone and supine. These differences would affect the shape of multiple pectoral muscles, which would affect breast shape and the accuracy of biomechanical models.
Collapse
Affiliation(s)
- Fangchao Pan
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Kejia Khoo
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | | | - Freda Song
- Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Deirdre McGhee
- Biomechanics Research Laboratory, University of Wollongong, NSW, Australia
| | - Anthony J Doyle
- Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand; Te Whatu Ora, Health New Zealand, New Zealand
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, University of Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, University of Auckland, New Zealand
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, University of Auckland, New Zealand
| | | |
Collapse
|
13
|
Lee D, Lee J, Oh JH, Shin CS. Effect of subscapularis repair on joint contact forces based on degree of posterior-superior rotator cuff tear severity in reverse shoulder arthroplasty. Front Bioeng Biotechnol 2023; 11:1229646. [PMID: 38130822 PMCID: PMC10733495 DOI: 10.3389/fbioe.2023.1229646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Massive irreparable rotator cuff tears (RCTs) affect the clinical outcomes of reverse shoulder arthroplasty (RSA). However, the effects of subscapularis repair on the outcomes of RSA, based on the degree of posterior-superior RCTs, are unclear. This study aimed to examine the effect of subscapularis repair on three-dimensional joint contact forces (JCFs) based on the degree of posterior-superior RCT severity in RSA. Ten human in vivo experimental data were used as input to the musculoskeletal model. A six-degrees-of-freedom (DOF) anatomical shoulder model was developed and validated against three-dimensional JCFs. The 6-DOF musculoskeletal shoulder model of RSA was then developed by importing the reverse shoulder implant into the validated anatomical shoulder model. Based on the various types of posterior-superior RCT severity, inverse dynamic simulations of subscapularis-torn and subscapularis-repaired models of RSA were performed: from isolated supraspinatus tears to partial or massive tears of the infraspinatus and teres minor. The intact rotator cuff model of RSA was also simulated for comparison with the different types of models. Our results showed that the more posterior-superior RCTs progressed in RSA, the more superior JCFs were observed at 90°, 105°, and 120° abduction in the subscapularis-torn model. However, subscapularis repair decreased the superior JCF at those angles sufficiently. In addition, the teres minor muscle-tendon force increased as infraspinatus bundle tears progressed in both the subscapularis-torn and -repaired models, in order to compensate for the reduced force during abduction. However, the teres minor muscle-tendon force was not as high as that of the infraspinatus muscle-tendon, which could result in muscle force imbalance between repaired subscapularis and teres minor. Therefore, our results suggest that repairing the subscapularis and the repairable infraspinatus during RSA can improve glenohumeral joint stability in the superior-inferior direction by restoring muscle force balance between the anterior cuff (i.e., subscapularis) and posterior cuff (i.e., infraspinatus and teres minor). The findings of this study can help clinician decide whether to repair the rotator cuff during RSA to enhance joint stability.
Collapse
Affiliation(s)
- Donghwan Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Jinkyu Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic Korea
| | - Choongsoo S. Shin
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Belli I, Joshi S, Prendergast JM, Beck I, Della Santina C, Peternel L, Seth A. Does enforcing glenohumeral joint stability matter? A new rapid muscle redundancy solver highlights the importance of non-superficial shoulder muscles. PLoS One 2023; 18:e0295003. [PMID: 38033021 PMCID: PMC10688910 DOI: 10.1371/journal.pone.0295003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The complexity of the human shoulder girdle enables the large mobility of the upper extremity, but also introduces instability of the glenohumeral (GH) joint. Shoulder movements are generated by coordinating large superficial and deeper stabilizing muscles spanning numerous degrees-of-freedom. How shoulder muscles are coordinated to stabilize the movement of the GH joint remains widely unknown. Musculoskeletal simulations are powerful tools to gain insights into the actions of individual muscles and particularly of those that are difficult to measure. In this study, we analyze how enforcement of GH joint stability in a musculoskeletal model affects the estimates of individual muscle activity during shoulder movements. To estimate both muscle activity and GH stability from recorded shoulder movements, we developed a Rapid Muscle Redundancy (RMR) solver to include constraints on joint reaction forces (JRFs) from a musculoskeletal model. The RMR solver yields muscle activations and joint forces by minimizing the weighted sum of squared-activations, while matching experimental motion. We implemented three new features: first, computed muscle forces include active and passive fiber contributions; second, muscle activation rates are enforced to be physiological, and third, JRFs are efficiently formulated as linear functions of activations. Muscle activity from the RMR solver without GH stability was not different from the computed muscle control (CMC) algorithm and electromyography of superficial muscles. The efficiency of the solver enabled us to test over 3600 trials sampled within the uncertainty of the experimental movements to test the differences in muscle activity with and without GH joint stability enforced. We found that enforcing GH stability significantly increases the estimated activity of the rotator cuff muscles but not of most superficial muscles. Therefore, a comparison of shoulder model muscle activity to EMG measurements of superficial muscles alone is insufficient to validate the activity of rotator cuff muscles estimated from musculoskeletal models.
Collapse
Affiliation(s)
- Italo Belli
- Cognitive Robotics Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
- Biomechanical Engineering Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
| | - Sagar Joshi
- Cognitive Robotics Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
- Biomechanical Engineering Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
| | - J. Micah Prendergast
- Cognitive Robotics Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
| | - Irene Beck
- Biomechanical Engineering Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
| | - Cosimo Della Santina
- Cognitive Robotics Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
- Robotics and Mechatronics Department, German Aerospace Center (DLR), Munich, Germany
| | - Luka Peternel
- Cognitive Robotics Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
| | - Ajay Seth
- Biomechanical Engineering Department, Technische Universiteit Delft, Delft, Zuid Holland, The Netherlands
| |
Collapse
|
15
|
Cerfoglio S, Lopomo NF, Capodaglio P, Scalona E, Monfrini R, Verme F, Galli M, Cimolin V. Assessment of an IMU-Based Experimental Set-Up for Upper Limb Motion in Obese Subjects. SENSORS (BASEL, SWITZERLAND) 2023; 23:9264. [PMID: 38005650 PMCID: PMC10674635 DOI: 10.3390/s23229264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
In recent years, wearable systems based on inertial sensors opened new perspectives for functional motor assessment with respect to the gold standard motion capture systems. The aim of this study was to validate an experimental set-up based on 17 body-worn inertial sensors (Awinda, Xsens, The Netherlands), addressing specific body segments with respect to the state-of-the art system (VICON, Oxford Metrics Ltd., Oxford, UK) to assess upper limb kinematics in obese, with respect to healthy subjects. Twenty-three obese and thirty healthy weight individuals were simultaneously acquainted with the two systems across a set of three tasks for upper limbs (i.e., frontal arm rise, lateral arm rise, and reaching). Root Mean Square error (RMSE) was computed to quantify the differences between the measurements provided by the systems in terms of range of motion (ROM), whilst their agreement was assessed via Pearson's correlation coefficient (PCC) and Bland-Altman (BA) plots. In addition, the signal waveforms were compared via one-dimensional statistical parametrical mapping (SPM) based on a paired t-test and a two-way ANOVA was applied on ROMs. The overall results partially confirmed the correlation and the agreement between the two systems, reporting only a moderate correlation for shoulder principal rotation angle in each task (r~0.40) and for elbow/flexion extension in obese subjects (r = 0.66), whilst no correlation was found for most non-principal rotation angles (r < 0.40). Across the performed tasks, an average RMSE of 34° and 26° was reported in obese and healthy controls, respectively. At the current state, the presence of bias limits the applicability of the inertial-based system in clinics; further research is intended in this context.
Collapse
Affiliation(s)
- Serena Cerfoglio
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (S.C.); (M.G.); (V.C.)
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy;
| | - Nicola Francesco Lopomo
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy; (N.F.L.); (R.M.)
| | - Paolo Capodaglio
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy;
- Department of Surgical Sciences, Physical Medicine and Rehabilitation, University of Turin, 10126 Turin, Italy
| | - Emilia Scalona
- Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, 25123 Brescia, Italy;
| | - Riccardo Monfrini
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy; (N.F.L.); (R.M.)
| | - Federica Verme
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy;
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (S.C.); (M.G.); (V.C.)
| | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (S.C.); (M.G.); (V.C.)
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy;
| |
Collapse
|
16
|
Croci E, Born P, Eckers F, Nüesch C, Baumgartner D, Müller AM, Mündermann A. Test-retest reliability of isometric shoulder muscle strength during abduction and rotation tasks measured using the Biodex dynamometer. J Shoulder Elbow Surg 2023; 32:2008-2016. [PMID: 37178965 DOI: 10.1016/j.jse.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The Constant score (CS) is often used clinically to assess shoulder function and includes a muscle strength assessment only for abduction. The aim of this study was to evaluate the test-retest reliability of isometric shoulder muscle strength during various positions of abduction and rotation with the Biodex dynamometer and to determine their correlation with the strength assessment of the CS. METHODS Ten young healthy subjects participated in this study. Isometric shoulder muscle strength was measured during 3 repetitions for abduction at 10° and 30° abduction in the scapular plane (with extended elbow and hand in neutral position) and for internal and external rotation (with the arm at 15° abduction in the scapular plane and elbow flexed at 90°). Muscle strength tests with the Biodex dynamometer were measured in 2 different sessions. The CS was acquired only in the first session. Intraclass correlation coefficients (ICCs) with 95% confidence interval, limits of agreement, and paired t tests for repeated tests of each abduction and rotation task were calculated. Pearson's correlation between the strength parameter of the CS and isometric muscle strength was investigated. RESULTS Muscle strength did not differ between tests (P > .05) with good to very good reliabilities for abduction at 10° and 30°, external rotation and internal rotation (ICC >0.7 for all). A moderate correlation of the strength parameter of the CS with all isometric shoulder strength parameters was observed (r > 0.5 for all). CONCLUSION Shoulder muscle strength for abduction and rotation measured with the Biodex dynamometer are reproducible and correlate with the strength assessment of the CS. Therefore, these isometric muscle strength tests can be further employed to investigate the effect of different shoulder joint pathology on muscle strength. These measurements consider a more comprehensive functionality of the rotator cuff than the single strength evaluation in abduction within the CS as both abduction and rotation are assessed. Potentially, this would allow for a more precise differentiation between the various outcomes of rotator cuff tears.
Collapse
Affiliation(s)
- Eleonora Croci
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland.
| | - Patrik Born
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Franziska Eckers
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Corina Nüesch
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Daniel Baumgartner
- IMES Institute of Mechanical Systems, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Andreas Marc Müller
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Annegret Mündermann
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Halloran KM, Focht MDK, Teague A, Peters J, Rice I, Kersh ME. Moving forward: A review of continuous kinetics and kinematics during handcycling propulsion. J Biomech 2023; 159:111779. [PMID: 37703719 DOI: 10.1016/j.jbiomech.2023.111779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Wheelchair users (WCUs) face high rates of shoulder overuse injuries. As exercise is recommended to reduce cardiovascular disease prevalent among WCUs, it is becoming increasingly important to understand the mechanisms behind shoulder soft-tissue injury in WCUs. Understanding the kinetics and kinematics during upper-limb propulsion is the first step toward evaluating soft-tissue injury risk in WCUs. This paper examines continuous kinetic and kinematic data available in the literature. Attach-unit and recumbent handcycling are examined and compared. Athletic modes of propulsion such as recumbent handcycling are important considering the higher contact forces, speed, and power outputs experienced during these activities that could put users at increased risk of injury. Understanding the underlying kinetics and kinematics during various propulsion modes can lend insight into shoulder loading, and therefore injury risk, during these activities and inform future exercise guidelines for WCUs.
Collapse
Affiliation(s)
- Kellie M Halloran
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, United States of America
| | - Michael D K Focht
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, United States of America
| | - Alexander Teague
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States of America
| | - Joseph Peters
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States of America; Disability Resources and Educational Services, University of Illinois Urbana-Champaign, United States of America
| | - Ian Rice
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, United States of America
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, United States of America; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States of America.
| |
Collapse
|
18
|
Jing Z, Han J, Zhang J. Comparison of biomechanical analysis results using different musculoskeletal models for children with cerebral palsy. Front Bioeng Biotechnol 2023; 11:1217918. [PMID: 37823025 PMCID: PMC10562727 DOI: 10.3389/fbioe.2023.1217918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction: Musculoskeletal model-based simulations have gained popularity as a tool for analyzing human movement biomechanics. However, when examining the same gait, different models with varying anatomical data and assumptions may produce inconsistent biomechanical results. This inconsistency is particularly relevant for children with cerebral palsy, who often exhibit multiple pathological gait patterns that can impact model outputs. Methods: The aim of this study was to investigate the effect of selecting musculoskeletal models on the biomechanical analysis results in children with cerebral palsy. Gait data were collected from multiple participants at slow, medium, and fast velocities. Joint kinematics, joint dynamics, and muscle activation were calculated using six popular musculoskeletal models within a biomechanical simulation environment. Results: The degree of inconsistency, measured as the root-mean-square deviation, in kinematic and kinetic results produced by the different models ranged from 4% to 40% joint motion range and 0%-28% joint moment range, respectively. The correlation between the results of the different models (both kinematic and kinetic) was good (R> 0.85, P < 0.01), with a stronger correlation observed in the kinetic results. Four of the six models showed a positive correlation between the simulated muscle activation of rectus femoris and the surface EMG, while all models exhibited a positive correlation between the activation of medial gastrocnemius and the surface EMG (P < 0.01). Discussion: These results provide insights into the consistency of model results, factors influencing consistency, characteristics of each model's outputs, mechanisms underlying these characteristics, and feasible applications for each model. By elucidating the impact of model selection on biomechanical analysis outcomes, this study advances the field's understanding of musculoskeletal modeling and its implications for clinical gait analysis model decision-making in children with cerebral palsy.
Collapse
Affiliation(s)
- Zhibo Jing
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Jianda Han
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
| | - Juanjuan Zhang
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Zhang X, Tham S, Ek ET, McCombe D, Ackland DC. Scaphoid, lunate and capitate kinematics in the normal and ligament deficient wrist: A bi-plane X-ray fluoroscopy study. J Biomech 2023; 158:111685. [PMID: 37573806 DOI: 10.1016/j.jbiomech.2023.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023]
Abstract
The ligamentous structures of the wrist stabilise and constrain the interactions of the carpal bones during active wrist motion; however, the three-dimensional translations and rotations of the scaphoid, lunate and capitate in the normal and ligament deficient wrist during planar and oblique wrist motions remain poorly understood. This study employed a computer-controlled simulator to replicate physiological wrist motion by dynamic muscle force application, while carpal kinematics were simultaneously measured using bi-plane x-ray fluoroscopy. The aim was to quantify carpal kinematics in the native wrist and after sequential sectioning of the scapholunate interosseous ligament (SLIL) and secondary scapholunate ligament structures. Seven fresh-frozen cadaveric wrist specimens were harvested, and cycles of flexion-extension, radial-ulnar deviation and dart-thrower's motion were simulated. The results showed significant rotational and translational changes to these carpal bones in all stages of disruptions to the supporting ligaments (p < 0.05). Specifically, following the disruption of the dorsal SLIL (Stage II), the scaphoid became significantly more flexed, ulnarly deviated, and pronated relative to the radius, whereas the lunate became more extended, supinated and volarly translated (p < 0.05). Sectioning of the dorsal intercarpal (DIC), dorsal radiocarpal (DRC), and scaphotrapeziotrapezoid (STT) ligaments (Stage IV) caused the scaphoid to collapse further into flexion, ulnar deviation, and pronation. These findings highlight the importance of all the ligamentous attachments that relate to the stability of the scapholunate joint, but more importantly, the dorsal SLIL in maintaining scapholunate stability, and the preservation of the attachments of the DIC and DRC ligaments during dorsal surgical approaches. The findings will be useful in diagnosing wrist pathology and in surgical planning.
Collapse
Affiliation(s)
- X Zhang
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - S Tham
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia; Department of Plastic and Hand Surgery, St. Vincent's Hospital, Fitzroy, Victoria, Australia; Division of Hand Surgery, Department of Orthopaedic Surgery, Monash University, Dandenong Hospital, Dandenong, Australia; Hand and Wrist Biomechanics Laboratory, O'Brien Institute, Fitzroy, Victoria, Australia
| | - E T Ek
- Division of Hand Surgery, Department of Orthopaedic Surgery, Monash University, Dandenong Hospital, Dandenong, Australia; Hand and Wrist Biomechanics Laboratory, O'Brien Institute, Fitzroy, Victoria, Australia
| | - D McCombe
- Department of Plastic and Hand Surgery, St. Vincent's Hospital, Fitzroy, Victoria, Australia; Division of Hand Surgery, Department of Orthopaedic Surgery, Monash University, Dandenong Hospital, Dandenong, Australia; Hand and Wrist Biomechanics Laboratory, O'Brien Institute, Fitzroy, Victoria, Australia
| | - D C Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
20
|
Fang Z, Woodford S, Senanayake D, Ackland D. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6535. [PMID: 37514829 PMCID: PMC10386307 DOI: 10.3390/s23146535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Inertial measurement units (IMUs) have become the mainstay in human motion evaluation outside of the laboratory; however, quantification of 3-dimensional upper limb motion using IMUs remains challenging. The objective of this systematic review is twofold. Firstly, to evaluate computational methods used to convert IMU data to joint angles in the upper limb, including for the scapulothoracic, humerothoracic, glenohumeral, and elbow joints; and secondly, to quantify the accuracy of these approaches when compared to optoelectronic motion analysis. Fifty-two studies were included. Maximum joint motion measurement accuracy from IMUs was achieved using Euler angle decomposition and Kalman-based filters. This resulted in differences between IMU and optoelectronic motion analysis of 4° across all degrees of freedom of humerothoracic movement. Higher accuracy has been achieved at the elbow joint with functional joint axis calibration tasks and the use of kinematic constraints on gyroscope data, resulting in RMS errors between IMU and optoelectronic motion for flexion-extension as low as 2°. For the glenohumeral joint, 3D joint motion has been described with RMS errors of 6° and higher. In contrast, scapulothoracic joint motion tracking yielded RMS errors in excess of 10° in the protraction-retraction and anterior-posterior tilt direction. The findings of this study demonstrate high-quality 3D humerothoracic and elbow joint motion measurement capability using IMUs and underscore the challenges of skin motion artifacts in scapulothoracic and glenohumeral joint motion analysis. Future studies ought to implement functional joint axis calibrations, and IMU-based scapula locators to address skin motion artifacts at the scapula, and explore the use of artificial neural networks and data-driven approaches to directly convert IMU data to joint angles.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3052, Australia; (Z.F.); (S.W.); (D.S.)
| | - Sarah Woodford
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3052, Australia; (Z.F.); (S.W.); (D.S.)
| | - Damith Senanayake
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3052, Australia; (Z.F.); (S.W.); (D.S.)
- Department of Mechanical Engineering, The University of Melbourne, Melbourne 3052, Australia
| | - David Ackland
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3052, Australia; (Z.F.); (S.W.); (D.S.)
| |
Collapse
|
21
|
Ernstbrunner L, Robinson DL, Huang Y, Wieser K, Hoy G, Ek ET, Ackland DC. The Influence of Glenoid Bone Loss and Graft Positioning on Graft and Cartilage Contact Pressures After the Latarjet Procedure. Am J Sports Med 2023; 51:2454-2464. [PMID: 37724693 DOI: 10.1177/03635465231179711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND Glenohumeral joint contact loading before and after glenoid bone grafting for recurrent anterior instability remains poorly understood. PURPOSE To develop a computational model to evaluate the influence of glenoid bone loss and graft positioning on graft and cartilage contact pressures after the Latarjet procedure. STUDY DESIGN Controlled laboratory study. METHODS A finite element model of the shoulder was developed using kinematics, muscle and glenohumeral joint loading of 6 male participants. Muscle and joint forces at 90° of abduction and external rotation were calculated and employed in simulations of the native shoulder, as well as the shoulder with a Bankart lesion, 10% and 25% glenoid bone loss, and after the Latarjet procedure. RESULTS A Bankart lesion as well as glenoid bone loss of 10% and 25% significantly increased glenoid and humeral cartilage contact pressures compared with the native shoulder (P < .05). The Latarjet procedure did not significantly increase glenoid cartilage contact pressure. With 25% glenoid bone loss, the Latarjet procedure with a graft flush with the glenoid and the humerus positioned at the glenoid half-width resulted in significantly increased humeral cartilage contact pressure compared with that preoperatively (P = .023). Under the same condition, medializing the graft by 1 mm resulted in humeral cartilage contact pressure comparable with that preoperatively (P = .097). Graft lateralization by 1 mm resulted in significantly increased humeral cartilage contact pressure in both glenoid bone loss conditions (P < .05). CONCLUSION This modeling study showed that labral damage and greater glenoid bone loss significantly increased glenoid and humeral cartilage contact pressures in the shoulder. The Latarjet procedure may mitigate this to an extent, although glenoid and humeral contact loading was sensitive to graft placement. CLINICAL RELEVANCE The Latarjet procedure with a correctly positioned graft should not lead to increased glenohumeral joint contact loading. The present study suggests that lateral graft overhang should be avoided, and in the situation of large glenoid bone defects, slight medialization (ie, 1 mm) of the graft may help to mitigate glenohumeral joint contact overloading.
Collapse
Affiliation(s)
- Lukas Ernstbrunner
- Department of Orthopaedic Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Orthopaedic Group, Windsor, Victoria, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Yichen Huang
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Greg Hoy
- Melbourne Orthopaedic Group, Windsor, Victoria, Australia
| | - Eugene T Ek
- Melbourne Orthopaedic Group, Windsor, Victoria, Australia
| | - David C Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Lavaill M, Martelli S, Cutbush K, Gupta A, Kerr GK, Pivonka P. Latarjet's muscular alterations increase glenohumeral joint stability: A theoretical study. J Biomech 2023; 155:111639. [PMID: 37245383 DOI: 10.1016/j.jbiomech.2023.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
The surgical Latarjet procedure aims to stabilise the glenohumeral joint following anterior dislocations. Despite restoring joint stability, the procedure introduces alterations of muscle paths which likely modify the shoulder dynamics. Currently, these altered muscular functions and their implications are unclear. Hence, this work aims to predict changes in muscle lever arms, muscle and joint forces following a Latarjet procedure by using a computational approach. Planar shoulder movements of ten participants were experimentally assessed. A validated upper-limb musculoskeletal model was utilised in two configurations, i.e., a baseline model, simulating normal joint, and a Latarjet model simulating its related muscular alterations. Muscle lever arms and differences in muscle and joint forces between models were derived from the experimental marker data and static optimisation technique. Lever arms of most altered muscles, hence their role, were substantially changed after Latarjet. Altered muscle forces varied by up to 15% of the body weight. Total glenohumeral joint force increased by up to 14% of the body weight after Latarjet, mostly due to increase in compression force. Our simulation indicated that the Latarjet muscular alterations lead to changes in the muscular recruitment and contribute to the stability of the glenohumeral joint by increasing compression force during planar motions.
Collapse
Affiliation(s)
- Maxence Lavaill
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia; Queensland Unit for Advanced Shoulder Research, Brisbane, QLD, Australia.
| | - Saulo Martelli
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia; Queensland Unit for Advanced Shoulder Research, Brisbane, QLD, Australia; Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, Australia
| | - Kenneth Cutbush
- Queensland Unit for Advanced Shoulder Research, Brisbane, QLD, Australia; St Andrew's War Memorial Hospital, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Brisbane, Australia
| | - Ashish Gupta
- Queensland Unit for Advanced Shoulder Research, Brisbane, QLD, Australia; Greenslopes Private Hospital, Brisbane, Australia
| | - Graham K Kerr
- Queensland Unit for Advanced Shoulder Research, Brisbane, QLD, Australia; Movement Neuroscience Group, School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia; Queensland Unit for Advanced Shoulder Research, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Haggie L, Schmid L, Röhrle O, Besier T, McMorland A, Saini H. Linking cortex and contraction-Integrating models along the corticomuscular pathway. Front Physiol 2023; 14:1095260. [PMID: 37234419 PMCID: PMC10206006 DOI: 10.3389/fphys.2023.1095260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson's disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord. An integrated understanding of motor control is necessary to reveal underlying neural-input and motor-output relationships. To facilitate the development of integrated corticomuscular motor pathway models, we provide an overview of the neuromusculoskeletal modelling landscape with a focus on integrating computational models of the motor cortex, spinal cord circuitry, α-motoneurons and skeletal muscle in regard to their role in generating voluntary muscle contraction. Further, we highlight the challenges and opportunities associated with an integrated corticomuscular pathway model, such as challenges in defining neuron connectivities, modelling standardisation, and opportunities in applying models to study emergent behaviour. Integrated corticomuscular pathway models have applications in brain-machine-interaction, education, and our understanding of neurological disease.
Collapse
Affiliation(s)
- Lysea Haggie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Laura Schmid
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Angus McMorland
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Harnoor Saini
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Bilateral upper extremity trunk model for cross-country sit-skiing double poling propulsion: model development and validation. Med Biol Eng Comput 2023; 61:445-455. [PMID: 36472762 DOI: 10.1007/s11517-022-02724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
The subacromial impingement syndrome is a high-incidence injury for cross-country sit-skiing skier, which is often accompanied by muscle imbalance. However, at present, no musculoskeletal model has been identified for this sport. Thus, this research aimed to establish a bilateral upper extremity trunk (BUET) musculoskeletal model suitable for cross-country sit-skiing based on OpenSim software and verify the function of the model. By splicing three existing OpenSim models, an upper limb model with 17 segments, 35 degrees of freedom, and 472 musculotendon actuators was established. The clavicle and scapula were modeled as individual bodies and then connected to the torso through a three-degrees-of-freedom rotational joint and to the clavicle through a weld joint, respectively. The five lumbar vertebrae were established separately and coupled into a three-degree-of-freedom joint. Kinematics, kinetic, and EMG signal data of five 15-s maximal effort interval tests were obtained by using seven cameras, ergometers, and surface EMG synchronous collection. Based on the resulting rotator cuff muscle geometry of the model, simulated muscle activation patterns were comparable to experimental data, and muscle-driven ability was proven. The model will be available online ( https://simtk.org/projects/bit ) for researchers to study the muscle activation of shoulder joint movement.
Collapse
|
25
|
Amrein S, Werner C, Arnet U, de Vries WHK. Machine-Learning-Based Methodology for Estimation of Shoulder Load in Wheelchair-Related Activities Using Wearables. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031577. [PMID: 36772617 PMCID: PMC9918997 DOI: 10.3390/s23031577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
There is a high prevalence of shoulder problems in manual wheelchair users (MWUs) with a spinal cord injury. How shoulder load relates to shoulder problems remains unclear. This study aimed to develop a machine-learning-based methodology to estimate the shoulder load in wheelchair-related activities of daily living using wearable sensors. Ten able-bodied participants equipped with five inertial measurement units (IMU) on their thorax, right arm, and wheelchair performed activities exemplary of daily life of MWUs. Electromyography (EMG) was recorded from the long head of the biceps and medial part of the deltoid. A neural network was trained to predict the shoulder load based on IMU and EMG data. Different cross-validation strategies, sensor setups, and model architectures were examined. The predicted shoulder load was compared to the shoulder load determined with musculoskeletal modeling. A subject-specific biLSTM model trained on a sparse sensor setup yielded the most promising results (mean correlation coefficient = 0.74 ± 0.14, relative root-mean-squared error = 8.93% ± 2.49%). The shoulder-load profiles had a mean similarity of 0.84 ± 0.10 over all activities. This study demonstrates the feasibility of using wearable sensors and neural networks to estimate the shoulder load in wheelchair-related activities of daily living.
Collapse
Affiliation(s)
- Sabrina Amrein
- Rehabilitation Engineering Laboratory, Department of Health Science and Technology, ETH Zurich, 8049 Zurich, Switzerland
- Swiss Paraplegic Research, Guido A. Zächstrasse 4, 6207 Nottwil, Switzerland
| | - Charlotte Werner
- Rehabilitation Engineering Laboratory, Department of Health Science and Technology, ETH Zurich, 8049 Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, 8008 Zurich, Switzerland
| | - Ursina Arnet
- Swiss Paraplegic Research, Guido A. Zächstrasse 4, 6207 Nottwil, Switzerland
| | | |
Collapse
|
26
|
Mubarrat ST, Chowdhury S. Convolutional LSTM: a deep learning approach to predict shoulder joint reaction forces. Comput Methods Biomech Biomed Engin 2023; 26:65-77. [PMID: 35234548 DOI: 10.1080/10255842.2022.2045974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We developed a Convolutional LSTM (ConvLSTM) network to predict shoulder joint reaction forces using 3D shoulder kinematics data containing 30 different shoulder activities from eight human subjects. We considered simulation outcomes from the AnyBody musculoskeletal model as the baseline force dataset to validate ConvLSTM model predictions. Results showed a good correlation (>80% accuracy, r ≥ 0.82) between ConvLSTM predicted and AnyBody estimated force values, the generalization of the developed model for novel task type (p-value = 0.07 ∼ 0.33), and a better prediction accuracy for the ConvLSTM model than conventional CNN and LSTM models.
Collapse
Affiliation(s)
- S T Mubarrat
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - S Chowdhury
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
27
|
Ernstbrunner L, Francis-Pester FW, Fox A, Wieser K, Ackland DC. Patients with recurrent anterior shoulder instability exhibit altered glenohumeral and scapulothoracic joint kinematics during upper limb movement: A prospective comparative study. Clin Biomech (Bristol, Avon) 2022; 100:105775. [PMID: 36242953 DOI: 10.1016/j.clinbiomech.2022.105775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Altered shoulder kinematics in patients with recurrent anterior shoulder instability remains poorly understood. This prospective study aimed to quantify in vivo glenohumeral and scapulothoracic joint kinematics and joint-contact positions in patients with shoulder instability and healthy controls. METHODS Twenty patients with recurrent anterior shoulder instability (mean 28 years) and five patients without shoulder pathology (mean 39 years) were scanned using open CT in six static upper limb positions including 90° of abduction, combined abduction and external rotation, 90° of flexion, lift-off position (i.e. reaching behind the back) and the neutral shoulder with external rotation. Image datasets were digitally reconstructed to quantify shoulder joint kinematics and glenohumeral translation. FINDINGS At 90° of abduction, instability patients demonstrated significantly less glenohumeral abduction and a reciprocal increase in upward scapulothoracic rotation compared to controls (mean difference: 13.3°, p = 0.038). With the shoulder in combined abduction and external rotation, instability patients showed a significant increase in glenohumeral rotation and a reciprocal decrease in scapulothoracic rotation compared to controls (mean difference: 5.0°, p = 0.042). There were no significant differences in humeral head translation in the sagittal plane (anterior-posterior axis) for all motions tested (p > 0.05). INTERPRETATION Scapulothoracic and glenohumeral kinematics are significantly different between patients with recurrent anterior shoulder instability and those with a healthy shoulder. Instability patients compensate for reduced glenohumeral function during abduction by increasing scapular rotation. With the shoulder in combined abduction and external rotation position, greater glenohumeral joint angles without significantly increased humeral head translation suggest altered neuromuscular control in the unstable shoulder.
Collapse
Affiliation(s)
- Lukas Ernstbrunner
- Department of Orthopaedic Surgery, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | - Aaron Fox
- Centre for Sport Research, Deakin University, Waurn Ponds, Geelong, Australia
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - David C Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
Alasim HN, Nimbarte AD. Variability of Time- and Frequency-Domain Surface Electromyographic Measures in Non-Fatigued Shoulder Muscles. IISE Trans Occup Ergon Hum Factors 2022; 10:201-212. [PMID: 36411999 DOI: 10.1080/24725838.2022.2150724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OCCUPATIONAL APPLICATIONSLocalized Muscle Fatigue (LMF) can be monitored or predicted based on the relative change in the values of surface electromyography (sEMG) measures with respect to the "fresh" or no-fatigue condition. Quantification of LMF based on relative change, though, relies on the assumption that the sEMG measures recorded in a no-fatigue condition can serve as an appropriate reference. Results of this study indicate that sEMG measures in a no-fatigue condition are affected by various work-related factors and provide further guidance on the variability of commonly used time- and frequency-domain sEMG measures to assist the ergonomist in improving the accuracy of LMF assessment.
Collapse
Affiliation(s)
- Hamad Nasser Alasim
- Mechanical and Industrial Engineering Department, College of Engineering, Majmaah University, Majmaah, Saudi Arabia
| | - Ashish D Nimbarte
- Industrial and Management Systems Engineering, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
29
|
Goubault E, Martinez R, Assila N, Monga-Dubreuil É, Dowling-Medley J, Dal Maso F, Begon M. Effect of Expertise on Shoulder and Upper Limb Kinematics, Electromyography, and Estimated Muscle Forces During a Lifting Task. HUMAN FACTORS 2022; 64:800-819. [PMID: 33236930 DOI: 10.1177/0018720820965021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To highlight the working strategies used by expert manual handlers compared with novice manual handlers, based on recordings of shoulder and upper limb kinematics, electromyography (EMG), and estimated muscle forces during a lifting task. BACKGROUND Novice workers involved in assembly, manual handling, and personal assistance tasks are at a higher risk of upper limb musculoskeletal disorders (MSDs). However, few studies have investigated the effect of expertise on upper limb exposure during workplace tasks. METHOD Sixteen experts in manual handling and sixteen novices were equipped with 10 electromyographic electrodes to record shoulder muscle activity during a manual handling task consisting of lifting a box (8 or 12 kg), instrumented with three six-axis force sensors, from hip to eye level. Three-dimensional trunk and upper limb kinematics, hand-to-box contact forces, and EMG were recorded. Then, joint contributions, activation levels, and muscle forces were calculated and compared between groups. RESULTS Sternoclavicular-acromioclavicular joint contributions were higher in experts at the beginning of the movement, and in novices at the end, whereas the opposite was observed for the glenohumeral joint. EMG activation levels were 37% higher for novices but predicted muscle forces were higher in experts. CONCLUSION This study highlights significant differences between experts and novices in shoulder kinematics, EMG, and muscle forces; hence, providing effective work guidelines to ensure the development of a safe handling strategy is important. APPLICATION Shoulder kinematics, EMG, and muscle forces could be used as ergonomic tools to identify inappropriate techniques that could increase the prevalence of shoulder injuries.
Collapse
Affiliation(s)
| | | | - Najoua Assila
- 5622 Université de Montréal, Montréal, QC, Canada
- Sainte-Justine Hospital Research Center, Montréal, QC, Canada
| | | | | | - Fabien Dal Maso
- 5622 Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Montréal, QC, Canada
| | - Mickael Begon
- 5622 Université de Montréal, Montréal, QC, Canada
- Sainte-Justine Hospital Research Center, Montréal, QC, Canada
| |
Collapse
|
30
|
The effects of anatomical errors on shoulder kinematics computed using multi-body models. Biomech Model Mechanobiol 2022; 21:1561-1572. [PMID: 35867281 DOI: 10.1007/s10237-022-01606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Joint motion calculated using multi-body models and inverse kinematics presents many advantages over direct marker-based calculations. However, the sensitivity of the computed kinematics is known to be partly caused by the model and could also be influenced by the participants' anthropometry and sex. This study aimed to compare kinematics computed from an anatomical shoulder model based on medical images against a scaled-generic model and quantify the effects of anatomical errors and participants' anthropometry on the calculated joint angles. Twelve participants have had planar shoulder movements experimentally captured in a motion lab, and their shoulder anatomy imaged using an MRI scanner. A shoulder multi-body dynamics model was developed for each participant, using both an image-based approach and a scaled-generic approach. Inverse kinematics have been performed using the two different modelling procedures and the three different experimental motions. Results have been compared using Bland-Altman analysis of agreement and further analysed using multi-linear regressions. Kinematics computed via an anatomical and a scaled-generic shoulder models differed in average from 3.2 to 5.4 degrees depending on the task. The MRI-based model presented smaller limits of agreement to direct kinematics than the scaled-generic model. Finally, the regression model predictors, including anatomical errors, sex, and BMI of the participant, explained from 41 to 80% of the kinematic variability between model types with respect to the task. This study highlighted the consequences of modelling precision, quantified the effects of anatomical errors on the shoulder kinematics, and showed that participants' anthropometry and sex could indirectly affect kinematic outcomes.
Collapse
|
31
|
Numerical and Experimental Investigations of Humeral Greater Tuberosity Fractures with Plate Fixation under Different Shoulder Rehabilitation Activities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The incidence of humerus greater tuberosity (GT) fractures is about 20% in patients with proximal humerus fractures. This study aimed to investigate the biomechanical performances of the humerus GT fracture stabilized by a locking plate with rotator cuff function for shoulder rehabilitation activities. A three-dimensional finite element model of the GT-fracture-treated humerus with a single traction force condition was analyzed for abduction, flexion, and horizontal flexion activities and validated by the biomechanical tests. The results showed that the stiffness calculated by the numerical models was closely related to that obtained by the mechanical tests with a correlation coefficient of 0.88. Under realistic rotator cuff muscle loading, the shoulder joint had a larger displacement at the fracture site (1.163 mm), as well as higher bone stress (60.6 MPa), higher plate stress (29.1 MPa), and higher mean screw stress (37.3 MPa) in horizontal flexion rehabilitation activity when compared to that abduction and flexion activities. The horizontal flexion may not be suggested in the early stage of shoulder joint rehabilitation activities. Numerical simulation techniques and experimental designs mimicked clinical treatment plans. These methodologies could be used to evaluate new implant designs and fixation strategies for the shoulder joint.
Collapse
|
32
|
Evaluating Anthropometric Scaling of a Generic Adult Model to Represent Pediatric Shoulder Strength. J Biomech 2022; 141:111170. [DOI: 10.1016/j.jbiomech.2022.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/24/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022]
|
33
|
Lavaill M, Martelli S, Kerr GK, Pivonka P. Statistical Quantification of the Effects of Marker Misplacement and Soft-Tissue Artifact on Shoulder Kinematics and Kinetics. Life (Basel) 2022; 12:life12060819. [PMID: 35743850 PMCID: PMC9227025 DOI: 10.3390/life12060819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The assessment of shoulder kinematics and kinetics are commonly undertaken biomechanically and clinically by using rigid-body models and experimental skin-marker trajectories. However, the accuracy of these trajectories is plagued by inherent skin-based marker errors due to marker misplacements (offset) and soft-tissue artifacts (STA). This paper aimed to assess the individual contribution of each of these errors to kinematic and kinetic shoulder outcomes computed using a shoulder rigid-body model. Baseline experimental data of three shoulder planar motions in a young healthy adult were collected. The baseline marker trajectories were then perturbed by simulating typically observed population-based offset and/or STA using a probabilistic Monte-Carlo approach. The perturbed trajectories were then used together with a shoulder rigid-body model to compute shoulder angles and moments and study their accuracy and variability against baseline. Each type of error was studied individually, as well as in combination. On average, shoulder kinematics varied by 3%, 6% and 7% due to offset, STA or combined errors, respectively. Shoulder kinetics varied by 11%, 27% and 28% due to offset, STA or combined errors, respectively. In conclusion, to reduce shoulder kinematic and kinetic errors, one should prioritise reducing STA as they have the largest error contribution compared to marker misplacements.
Collapse
Affiliation(s)
- Maxence Lavaill
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.M.); (P.P.)
- Queensland Unit for Advanced Shoulder Research, Brisbane, QLD 4000, Australia;
- Correspondence:
| | - Saulo Martelli
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.M.); (P.P.)
- Queensland Unit for Advanced Shoulder Research, Brisbane, QLD 4000, Australia;
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| | - Graham K. Kerr
- Queensland Unit for Advanced Shoulder Research, Brisbane, QLD 4000, Australia;
- Movement Neuroscience Group, School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.M.); (P.P.)
- Queensland Unit for Advanced Shoulder Research, Brisbane, QLD 4000, Australia;
| |
Collapse
|
34
|
Skuric A, Padois V, Rezzoug N, Daney D. On-Line Feasible Wrench Polytope Evaluation Based on Human Musculoskeletal Models: An Iterative Convex Hull Method. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Livet C, Rouvier T, Dumont G, Pontonnier C. An Automatic and Simplified Approach to Muscle Path Modeling. J Biomech Eng 2022; 144:1114850. [PMID: 34292317 DOI: 10.1115/1.4051870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 11/08/2022]
Abstract
This paper aims at proposing an automatic method to design and adjust simplified muscle paths of a musculoskeletal model. These muscle paths are composed of straight lines described by a limited set of fixed active via points and an optimization routine is developed to place these via points on the model in order to fit moment arms and musculotendon lengths input data. The method has been applied to a forearm musculoskeletal model extracted from the literature, using theoretical input data as an example. Results showed that for 75% of the muscle set, the relative root-mean-square error between literature theoretical data and the results from optimized muscle path was under 29.23% for moment arms and of 1.09% for musculotendon lengths. These results confirm the ability of the method to automatically generate computationally efficient muscle paths for musculoskeletal simulations. Using only via points lowers computational expense compared to paths exhibiting wrapping objects. A proper balance between computational time and anatomical realism should be found to help those models being interpreted by practitioners.
Collapse
Affiliation(s)
- Claire Livet
- Univ Rennes, Inria, CNRS, IRISA, Rennes 35000, France
| | - Théo Rouvier
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris 75013, France
| | | | | |
Collapse
|
36
|
Kian A, Pizzolato C, Halaki M, Ginn K, Lloyd D, Reed D, Ackland D. The effectiveness of EMG-driven neuromusculoskeletal model calibration is task dependent. J Biomech 2021; 129:110698. [PMID: 34607281 DOI: 10.1016/j.jbiomech.2021.110698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
Calibration of neuromusculoskeletal models using functional tasks is performed to calculate subject-specific musculotendon parameters, as well as coefficients describing the shape of muscle excitation and activation functions. The objective of the present study was to employ a neuromusculoskeletal model of the shoulder driven entirely from muscle electromyography (EMG) to quantify the influence of different model calibration strategies on muscle and joint force predictions. Three healthy adults performed dynamic shoulder abduction and flexion, followed by calibration tasks that included reaching, head touching as well as active and passive abduction, flexion and axial rotation, and submaximal isometric abduction, flexion and axial rotation contractions. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using subject-specific EMG-driven neuromusculoskeletal models that were uncalibrated and calibrated using (i) all calibration tasks (ii) sagittal plane calibration tasks, and (iii) scapular plane calibration tasks. Joint forces were compared to published instrumented implant data. Calibrating models across all tasks resulted in glenohumeral joint force magnitudes that were more similar to instrumented implant data than those derived from any other model calibration strategy. Muscles that generated greater torque were more sensitive to calibration than those that contributed less. This study demonstrates that extensive model calibration over a broad range of contrasting tasks produces the most accurate and physiologically relevant musculotendon and EMG-to-activation parameters. This study will assist in development and deployment of subject-specific neuromusculoskeletal models.
Collapse
Affiliation(s)
- Azadeh Kian
- Department of Biomedical Engineering, University of Melbourne, Australia; Institute for Health and Sport, Victoria University, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland and School of Allied Health Sciences, Griffith University, Australia
| | - Mark Halaki
- Discipline of Exercise and Sport Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Karen Ginn
- Discipline of Anatomy & Histology, Faculty of Medicine and Health, The University of Sydney, Australia
| | - David Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland and School of Allied Health Sciences, Griffith University, Australia
| | - Darren Reed
- Discipline of Anatomy & Histology, Faculty of Medicine and Health, The University of Sydney, Australia
| | - David Ackland
- Department of Biomedical Engineering, University of Melbourne, Australia.
| |
Collapse
|
37
|
Huang Y, Robinson DL, Pitocchi J, Lee PVS, Ackland DC. Glenohumeral joint reconstruction using statistical shape modeling. Biomech Model Mechanobiol 2021; 21:249-259. [PMID: 34837584 DOI: 10.1007/s10237-021-01533-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.
Collapse
Affiliation(s)
- Yichen Huang
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David C Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
38
|
Huang Y, Ernstbrunner L, Robinson DL, Lee PVS, Ackland DC. Complications of Reverse Total Shoulder Arthroplasty: A Computational Modelling Perspective. J Clin Med 2021; 10:5336. [PMID: 34830616 PMCID: PMC8625535 DOI: 10.3390/jcm10225336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Reverse total shoulder arthroplasty (RTSA) is an established treatment for elderly patients with irreparable rotator cuff tears, complex proximal humerus fractures, and revision arthroplasty; however, with the increasing indications for RTSA over the last decade and younger implant recipients, post-operative complications have become more frequent, which has driven advances in computational modeling and simulation of reverse shoulder biomechanics. The objective of this study was to provide a review of previously published studies that employed computational modeling to investigate complications associated with RTSA. Models and applications were reviewed and categorized into four possible complications that included scapular notching, component loosening, glenohumeral joint instability, and acromial and scapular spine fracture, all of which remain a common cause of significant functional impairment and revision surgery. The computational shoulder modeling studies reviewed were primarily used to investigate the effects of implant design, intraoperative component placement, and surgical technique on postoperative shoulder biomechanics after RTSA, with the findings ultimately used to elucidate and mitigate complications. The most significant challenge associated with the development of computational models is in the encapsulation of patient-specific anatomy and surgical planning. The findings of this review provide a basis for future direction in computational modeling of the reverse shoulder.
Collapse
Affiliation(s)
- Yichen Huang
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (Y.H.); (L.E.); (D.L.R.); (P.V.S.L.)
| | - Lukas Ernstbrunner
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (Y.H.); (L.E.); (D.L.R.); (P.V.S.L.)
- Department of Orthopaedic Surgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
- Melbourne Orthopaedic Group, Windsor, VIC 3181, Australia
| | - Dale L. Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (Y.H.); (L.E.); (D.L.R.); (P.V.S.L.)
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (Y.H.); (L.E.); (D.L.R.); (P.V.S.L.)
| | - David C. Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (Y.H.); (L.E.); (D.L.R.); (P.V.S.L.)
| |
Collapse
|
39
|
Sarshari E, Boulanaache Y, Terrier A, Farron A, Mullhaupt P, Pioletti D. A Matlab toolbox for scaled-generic modeling of shoulder and elbow. Sci Rep 2021; 11:20806. [PMID: 34675343 PMCID: PMC8531442 DOI: 10.1038/s41598-021-99856-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/28/2021] [Indexed: 11/12/2022] Open
Abstract
There still remains a barrier ahead of widespread clinical applications of upper extremity musculoskeletal models. This study is a step toward lifting this barrier for a shoulder musculoskeletal model by enhancing its realism and facilitating its applications. To this end, two main improvements are considered. First, the elbow and the muscle groups spanning the elbow are included in the model. Second, scaling routines are developed that scale model's bone segment inertial properties, skeletal morphologies, and muscles architectures according to a specific subject. The model is also presented as a Matlab toolbox with a graphical user interface to exempt its users from further programming. We evaluated effects of anthropometric parameters, including subject's gender, height, weight, glenoid inclination, and degenerations of rotator cuff muscles on the glenohumeral joint reaction force (JRF) predictions. An arm abduction motion in the scapula plane is simulated while each of the parameters is independently varied. The results indeed illustrate the effect of anthropometric parameters and provide JRF predictions with less than 13% difference compared to in vivo studies. The developed Matlab toolbox could be populated with pre/post operative patients of total shoulder arthroplasty to answer clinical questions regarding treatments of glenohumeral joint osteoarthritis.
Collapse
Affiliation(s)
- Ehsan Sarshari
- Automatic Control Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yasmine Boulanaache
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Terrier
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Department of Orthopedics and Traumatology, University Hospital Centre and University of Lausanne (CHUV), Lausanne, Switzerland.
| | - Alain Farron
- Department of Orthopedics and Traumatology, University Hospital Centre and University of Lausanne (CHUV), Lausanne, Switzerland
| | - Philippe Mullhaupt
- Automatic Control Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dominique Pioletti
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
40
|
Sylvester AD, Lautzenheiser SG, Kramer PA. A review of musculoskeletal modelling of human locomotion. Interface Focus 2021; 11:20200060. [PMID: 34938430 DOI: 10.1098/rsfs.2020.0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Locomotion through the environment is important because movement provides access to key resources, including food, shelter and mates. Central to many locomotion-focused questions is the need to understand internal forces, particularly muscle forces and joint reactions. Musculoskeletal modelling, which typically harnesses the power of inverse dynamics, unites experimental data that are collected on living subjects with virtual models of their morphology. The inputs required for producing good musculoskeletal models include body geometry, muscle parameters, motion variables and ground reaction forces. This methodological approach is critically informed by both biological anthropology, with its focus on variation in human form and function, and mechanical engineering, with a focus on the application of Newtonian mechanics to current problems. Here, we demonstrate the application of a musculoskeletal modelling approach to human walking using the data of a single male subject. Furthermore, we discuss the decisions required to build the model, including how to customize the musculoskeletal model, and suggest cautions that both biological anthropologists and engineers who are interested in this topic should consider.
Collapse
Affiliation(s)
- Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD 21205, USA
| | - Steven G Lautzenheiser
- Department of Anthropology, University of Washington, Denny Hall, Seattle, WA 98195, USA.,Department of Anthropology, The University of Tennessee, Strong Hall, Knoxville, TN 37996, USA
| | - Patricia Ann Kramer
- Department of Anthropology, University of Washington, Denny Hall, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Assila N, Duprey S, Begon M. Glenohumeral joint and muscles functions during a lifting task. J Biomech 2021; 126:110641. [PMID: 34329880 DOI: 10.1016/j.jbiomech.2021.110641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The mobility of the healthy shoulder depends on complex interactions between the muscles spanning its glenohumeral joint. These interactions ensure the stability of this joint. While previous studies emphasized the complexity of the glenohumeral stability, it is still not clear how the kinematics and muscles interact and adapt to ensure a healthy function of the glenohumeral joint. To understand the function of each muscle and degree of freedom of the glenohumeral joint in executing an above-the shoulder box handling task while ensuring stability, we adapted an index-based approach previously used to characterize the functions of the lower limb joints and muscles during locomotion. Forty participants lifted two loads (6 Vs. 12 kg) from hip to eye level. We computed the mechanical powers of the glenohumeral joint and its spanning muscles. We characterized the function of muscles and degrees of freedom using function indices. The function of the glenohumeral joint underlined its compliancy and design for a large range of motion, while the rotator cuff indices emphasized their stabilizing function. The overall muscle functions underlined the complexity of the glenohumeral stability that goes beyond the rotator cuff. Additionally, the load increase was compensated with changes in the functions that seem to favor joint stability. The implemented approach represents a synthetized tool that could quantify the glenohumeral joint and muscles behavior during tridimensional upper limb tasks, which might offer additional insight into motor control strategies and functional alterations related to pathologies or external parameters (e.g., load).
Collapse
Affiliation(s)
- Najoua Assila
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France; School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, QC, Canada; Sainte-Justine Hospital Research Centre, Montreal, QC, Canada.
| | - Sonia Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France
| | - Mickaël Begon
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, QC, Canada; Sainte-Justine Hospital Research Centre, Montreal, QC, Canada
| |
Collapse
|
42
|
Karimi MT, Khademi S. Investigation of the range of motion of the shoulder joint in subjects with rotator cuff arthropathy while performing daily activities. Clin Shoulder Elb 2021; 24:88-92. [PMID: 34078016 PMCID: PMC8181838 DOI: 10.5397/cise.2020.00367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background Patients who have rotator cuff arthropathy experience a limited range of motion (ROM) of the shoulder joint and experience problems in performing their daily activities; however, no evidence is available to suggest the exact ROM of the shoulder joint in this population. Therefore, this study sought to determine the degree of motion of the shoulder joint in three planes during different activities. Methods Five subjects with rotator cuff injuries participated in this study. The motion of the shoulder joints on both the involved and normal sides was assessed by a motion analysis system while performing forward abduction (task 1), flexion (task 2), and forward flexion (task 3). The OpenSIM software program was used to determine the ROM of the shoulder joints on both sides. The difference between the ranges of motion was determined using a two-sample t-test. Results The ROMs of the shoulder joint in task 1 were 93.5°±16.5°, 72.1°±2.6°, and 103.9°±25.7° for flexion, abduction, and rotation, respectively, on the normal side and 28°±19.8°, 31°±31.56°, and 48°±33.5° on the involved side (p<0.05). There was no significant difference between the flexion/extension and rotation movements of the shoulder joint when performing task 1. However, the difference between flexion and rotation movements of the shoulder joints for the second task was significant (p>0.05). Conclusions Those with rotator cuff arthropathy have functional limitations due to muscle weakness and paralysis, especially during the vertical reaching task. However, although these individuals have decreased ROM for transverse reaching tasks, the reduction was not significant.
Collapse
Affiliation(s)
- Mohammad Taghi Karimi
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khademi
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Wu W, Saul KR, Huang HH. Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics. J Biomech Eng 2021; 143:044502. [PMID: 33332536 DOI: 10.1115/1.4049333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Indexed: 11/08/2022]
Abstract
Reinforcement learning (RL) has potential to provide innovative solutions to existing challenges in estimating joint moments in motion analysis, such as kinematic or electromyography (EMG) noise and unknown model parameters. Here, we explore feasibility of RL to assist joint moment estimation for biomechanical applications. Forearm and hand kinematics and forearm EMGs from four muscles during free finger and wrist movement were collected from six healthy subjects. Using the proximal policy optimization approach, we trained two types of RL agents that estimated joint moment based on measured kinematics or measured EMGs, respectively. To quantify the performance of trained RL agents, the estimated joint moment was used to drive a forward dynamic model for estimating kinematics, which was then compared with measured kinematics using Pearson correlation coefficient. The results demonstrated that both trained RL agents are feasible to estimate joint moment for wrist and metacarpophalangeal (MCP) joint motion prediction. The correlation coefficients between predicted and measured kinematics, derived from the kinematics-driven agent and subject-specific EMG-driven agents, were 98% ± 1% and 94% ± 3% for the wrist, respectively, and were 95% ± 2% and 84% ± 6% for the metacarpophalangeal joint, respectively. In addition, a biomechanically reasonable joint moment-angle-EMG relationship (i.e., dependence of joint moment on joint angle and EMG) was predicted using only 15 s of collected data. In conclusion, this study illustrates that an RL approach can be an alternative technique to conventional inverse dynamic analysis in human biomechanics study and EMG-driven human-machine interfacing applications.
Collapse
Affiliation(s)
- Wen Wu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Raleigh, NC 27695
| | - Katherine R Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
| | - He Helen Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
44
|
Fox AS, Bonacci J, Gill SD, Page RS. Simulating the effect of glenohumeral capsulorrhaphy on kinematics and muscle function. J Orthop Res 2021; 39:880-890. [PMID: 33241584 DOI: 10.1002/jor.24908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/21/2020] [Accepted: 11/08/2020] [Indexed: 02/04/2023]
Abstract
This study aimed to use a predictive simulation framework to examine shoulder kinematics, muscular effort, and task performance during functional upper limb movements under simulated selective glenohumeral capsulorrhaphy. A musculoskeletal model of the torso and upper limb was adapted to include passive restraints that simulated the changes in shoulder range of motion stemming from selective glenohumeral capsulorrhaphy procedures (anteroinferior, anterosuperior, posteroinferior, posterosuperior, and total anterior, inferior, posterior, and superior). Predictive muscle-driven simulations of three functional movements (upward reach, forward reach, and head touch) were generated with each model. Shoulder kinematics (elevation, elevation plane, and axial rotation), muscle cost (i.e., muscular effort), and task performance time were compared to a baseline model to assess the impact of the capsulorrhaphy procedures. Minimal differences in shoulder kinematics and task performance times were observed, suggesting that task performance could be maintained across the capsulorrhaphy conditions. Increased muscle cost was observed under the selective capsulorrhaphy conditions, however this was dependent on the task and capsulorrhaphy condition. Larger increases in muscle cost were observed under the capsulorrhaphy conditions that incurred the greatest reductions in shoulder range of motion (i.e., total inferior, total anterior, anteroinferior, and total posterior conditions) and during tasks that required shoulder kinematics closer to end range of motion (i.e., upward reach and head touch). The elevated muscle loading observed could present a risk to joint capsule repair. Appropriate rehabilitation following glenohumeral capsulorrhaphy is required to account for the elevated demands placed on muscles, particularly when a significant range of motion loss presents.
Collapse
Affiliation(s)
- Aaron S Fox
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.,Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health, St John of God Hospital, Deakin University, Geelong, Australia
| | - Jason Bonacci
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Stephen D Gill
- Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health, St John of God Hospital, Deakin University, Geelong, Australia.,School of Medicine, Deakin University, Geelong, Australia.,Orthopaedic Department, University Hospital Geelong, Barwon Health, Geelong, Australia
| | - Richard S Page
- Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health, St John of God Hospital, Deakin University, Geelong, Australia.,School of Medicine, Deakin University, Geelong, Australia.,Orthopaedic Department, University Hospital Geelong, Barwon Health, Geelong, Australia
| |
Collapse
|
45
|
Fox A, Bonacci J, Gill SD, Page RS. Evaluating the effects of arthroscopic Bankart repair and open Latarjet shoulder stabilisation procedures on shoulder joint neuromechanics and function: a single-centre, parallel-arm trial protocol. BMJ Open Sport Exerc Med 2021; 7:e000956. [PMID: 33692905 PMCID: PMC7907843 DOI: 10.1136/bmjsem-2020-000956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Shoulder instability injuries are common in sports involving collisions and overhead movements. Arthroscopic Bankart repair and the open Latarjet are two commonly used surgical stabilisation procedures. There is a lack of knowledge surrounding movement strategies, joint loading and muscle strength after each of these procedures. This study will compare: (1) shoulder joint neuromechanics during activities of daily living and an overhead sporting task; (2) shoulder range of motion; (3) shoulder strength; and (4) self-reported shoulder function and health status, between individuals who have undergone an arthroscopic Bankart repair versus open Latarjet. Methods and analysis This is a prospective cohort, single-centre, non-randomised parallel arm study of surgical interventions for athletic shoulder instability injuries. Thirty participants will be recruited. Of these, 20 will have experienced one or more traumatic shoulder instability injuries requiring surgical stabilisation—and will undergo an arthroscopic Bankart repair or open Latarjet procedure. The remaining 10 participants will have no history of shoulder instability injury and act as controls. Participants will undergo baseline testing and be followed up at 3, 6 and 12 months. A two-way (group×time) analysis of variance with repeated measures on one factor (ie, time) will compare each outcome measure between groups across time points. Ethics and dissemination This study was approved by the Barwon Health and Deakin University Human Research Ethics Committees. Outcomes will be disseminated through publications in peer-reviewed journals and presentations at relevant scientific conferences. Trial registration number Australian and New Zealand Clinical Trials Registry (ACTRN12620000016932).
Collapse
Affiliation(s)
- Aaron Fox
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Waurn Ponds, Victoria, Australia.,Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health, Geelong, Victoria, Australia
| | - Jason Bonacci
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Stephen D Gill
- Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health, Geelong, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Richard S Page
- Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health, Geelong, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia.,Orthopaedic Department, University Hospital Geelong, Geelong, Victoria, Australia
| |
Collapse
|
46
|
Abstract
Neuromuscular and sensorimotor degeneration caused by stroke or any other disease significantly reduce the physical, cognitive, and social well-being across the life span. Mostly, therapeutic interventions are employed in order to restore the lost degrees-of-freedom (DOF) caused by such impairments and automating these therapeutic tasks through exoskeletons/robots is becoming a common practice. However, aligning these robotic devices with the complex anatomical and geometrical motions of the joints is very challenging. At the same time, a good alignment is required in order to establish a better synergy of human-exoskeleton system for an effective intervention procedure. In this paper, a case study of an exoskeleton and shoulder joint alignment were studied through different size and orientation impairment models through motion capture data and musculoskeletal modeling in OpenSim. A preliminary result indicates that shoulder elevation is very sensitive to misalignment and varies with shoulder joint axes orientation; this is partly due to drastic displacement of the upper arm axes with respect to the shoulder joint origin during elevation. Additional study and analysis is required to learn any possible restraint on shoulder elevation that could potentially help in the exoskeleton development.
Collapse
|
47
|
Martinez R, Assila N, Goubault E, Begon M. Sex differences in upper limb musculoskeletal biomechanics during a lifting task. APPLIED ERGONOMICS 2020; 86:103106. [PMID: 32342895 DOI: 10.1016/j.apergo.2020.103106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Women experience higher prevalence of work-related upper limb musculoskeletal disorders compared to men. Previous studies have investigated the biological, kinematic and electromyographic sex-related differences during a lifting task but the actual differences in musculoskeletal loads remain unknown. We investigated the sex differences in three musculoskeletal indicators: the sum of muscle activations, the sum of muscle forces and the relative time spent beyond a shear-compression dislocation ratio. A musculoskeletal model was scaled on 20 women and 20 men lifting a 6 or 12kg box from hip to eye level. Women generated more muscle forces and activations than men, regardless of the lifted mass. Those differences occurred when the box was above shoulder level. In addition, women might spend more time beyond a shear-compression dislocation ratio. Our work suggests higher musculoskeletal loads among women compared to men during a lifting task, which could be the result of poor technique and strength difference.
Collapse
Affiliation(s)
- Romain Martinez
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada.
| | - Najoua Assila
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada
| | - Etienne Goubault
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada
| | - Mickaël Begon
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada
| |
Collapse
|
48
|
Williamson PM, Hanna P, Momenzadeh K, Lechtig A, Okajima S, Ramappa AJ, DeAngelis JP, Nazarian A. Effect of rotator cuff muscle activation on glenohumeral kinematics: A cadaveric study. J Biomech 2020; 105:109798. [PMID: 32423544 DOI: 10.1016/j.jbiomech.2020.109798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
Healthy shoulder function requires the coordination of the rotator cuff muscles to maintain the humeral head's position in the glenoid. While glenohumeral stability has been studied in various settings, few studies have characterized the effect of dynamic rotator cuff muscle loading on glenohumeral translation during shoulder motion. We hypothesize that dynamic rotator cuff muscle activation decreases joint translation during continuous passive abduction of the humerus in a cadaveric model of scapular plane glenohumeral abduction. The effect of different rotator cuff muscle activity on glenohumeral translation was assessed using a validated shoulder testing system. The Dynamic Load profile is a novel approach, based on musculoskeletal modeling of human subject motion. Passive humeral elevation in the scapular plane was applied via the testing system arm, while the rotator cuff muscles were activated according to the specified force profiles using stepper motors and a proportional control feedback loop. Glenohumeral translation was defined according to the International Society of Biomechanics. The Dynamic load profile minimized superior translation of the humeral head relative to the conventional loading profiles. The total magnitude of translation was not significantly different (0.805) among the loading profiles suggesting that the compressive forces from the rotator cuff primarily alter the direction of humeral head translation, not the magnitude. Rotator cuff muscle loading is an important element of cadaveric shoulder studies that must be considered to accurately simulate glenohumeral motion. A rotator cuff muscle activity profile based on human subject muscle activity reduces superior glenohumeral translation when compared to previous RC loading profiles.
Collapse
Affiliation(s)
- Patrick M Williamson
- Boston University, Mechanical Engineering Department, Boston, MA, USA; Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Philip Hanna
- Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kaveh Momenzadeh
- Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aron Lechtig
- Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stephen Okajima
- Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Arun J Ramappa
- Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph P DeAngelis
- Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
49
|
EMG-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glenohumeral stability is essential for a healthy function of the shoulder. It is ensured partly by the scapulohumeral muscular balance. Accordingly, modelling muscle interactions is a key factor in the understanding of occupational pathologies, and the development of ergonomic interventions. While static optimization is commonly used to estimate muscle activations, it tends to underestimate the role of shoulder’s antagonist muscles. The purpose of this study was to implement experimental electromyographic (EMG) data to predict muscle activations that could account for the stabilizing role of the shoulder muscles. Kinematics and EMG were recorded from 36 participants while lifting a box from hip to eye level. Muscle activations and glenohumeral joint reactions were estimated using an EMG-assisted algorithm and compared to those obtained using static optimization with a generic and calibrated model. Muscle activations predicted with the EMG-assisted method were generally larger. Additionally, more interactions between the different rotator cuff muscles, as well as between primer actuators and stabilizers, were predicted with the EMG-assisted method. Finally, glenohumeral forces calculated from a calibrated model remained within the boundaries of the glenoid stability cone. These findings suggest that EMG-assisted methods could account for scapulohumeral muscle co-contraction, and thus their contribution to the glenohumeral stability.
Collapse
|
50
|
Barnamehei H, Tabatabai Ghomsheh F, Safar Cherati A, Pouladian M. Muscle and joint force dependence of scaling and skill level of athletes in high-speed overhead task: Musculoskeletal simulation study. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|