1
|
Ting LH, Gick B, Kesar TM, Xu J. Ethnokinesiology: towards a neuromechanical understanding of cultural differences in movement. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230485. [PMID: 39155720 PMCID: PMC11529631 DOI: 10.1098/rstb.2023.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 08/20/2024] Open
Abstract
Each individual's movements are sculpted by constant interactions between sensorimotor and sociocultural factors. A theoretical framework grounded in motor control mechanisms articulating how sociocultural and biological signals converge to shape movement is currently missing. Here, we propose a framework for the emerging field of ethnokinesiology aiming to provide a conceptual space and vocabulary to help bring together researchers at this intersection. We offer a first-level schema for generating and testing hypotheses about cultural differences in movement to bridge gaps between the rich observations of cross-cultural movement variations and neurophysiological and biomechanical accounts of movement. We explicitly dissociate two interacting feedback loops that determine culturally relevant movement: one governing sensorimotor tasks regulated by neural signals internal to the body, the other governing ecological tasks generated through actions in the environment producing ecological consequences. A key idea is the emergence of individual-specific and culturally influenced motor concepts in the nervous system, low-dimensional functional mappings between sensorimotor and ecological task spaces. Motor accents arise from perceived differences in motor concept topologies across cultural contexts. We apply the framework to three examples: speech, gait and grasp. Finally, we discuss how ethnokinesiological studies may inform personalized motor skill training and rehabilitation, and challenges moving forward.This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
- Lena H. Ting
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Georgia Institute of Technology, Atlanta, GA30332, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA30322, USA
| | - Bryan Gick
- Department of Linguistics, The University British Columbia, Vancouver, BCV6T 1Z4, Canada
- Haskins Laboratories, Yale University, New Haven, CT06520, USA
| | - Trisha M. Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA30322, USA
| | - Jing Xu
- Department of Kinesiology, The University of Georgia, Athens, GA30602, USA
| |
Collapse
|
2
|
Niyo G, Almofeez LI, Erwin A, Valero-Cuevas FJ. A computational study of how an α- to γ-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement. Proc Natl Acad Sci U S A 2024; 121:e2321659121. [PMID: 39116178 PMCID: PMC11348295 DOI: 10.1073/pnas.2321659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The primary motor cortex does not uniquely or directly produce alpha motoneurone (α-MN) drive to muscles during voluntary movement. Rather, α-MN drive emerges from the synthesis and competition among excitatory and inhibitory inputs from multiple descending tracts, spinal interneurons, sensory inputs, and proprioceptive afferents. One such fundamental input is velocity-dependent stretch reflexes in lengthening muscles, which should be inhibited to enable voluntary movement. It remains an open question, however, the extent to which unmodulated stretch reflexes disrupt voluntary movement, and whether and how they are inhibited in limbs with numerous multiarticular muscles. We used a computational model of a Rhesus Macaque arm to simulate movements with feedforward α-MN commands only, and with added velocity-dependent stretch reflex feedback. We found that velocity-dependent stretch reflex caused movement-specific, typically large and variable disruptions to arm movements. These disruptions were greatly reduced when modulating velocity-dependent stretch reflex feedback (i) as per the commonly proposed (but yet to be clarified) idealized alpha-gamma (α-γ) coactivation or (ii) an alternative α-MN collateral projection to homonymous γ-MNs. We conclude that such α-MN collaterals are a physiologically tenable propriospinal circuit in the mammalian fusimotor system. These collaterals could still collaborate with α-γ coactivation, and the few skeletofusimotor fibers (β-MNs) in mammals, to create a flexible fusimotor ecosystem to enable voluntary movement. By locally and automatically regulating the highly nonlinear neuro-musculo-skeletal mechanics of the limb, these collaterals could be a critical low-level enabler of learning, adaptation, and performance via higher-level brainstem, cerebellar, and cortical mechanisms.
Collapse
Affiliation(s)
- Grace Niyo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA90089
| | - Lama I. Almofeez
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA90089
| | - Andrew Erwin
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA90033
- Mechanical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH45221
| | - Francisco J. Valero-Cuevas
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA90089
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
3
|
Chambellant F, Gaveau J, Papaxanthis C, Thomas E. Deactivation and collective phasic muscular tuning for pointing direction: Insights from machine learning. Heliyon 2024; 10:e33461. [PMID: 39050418 PMCID: PMC11268187 DOI: 10.1016/j.heliyon.2024.e33461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Arm movements in our daily lives have to be adjusted for several factors in response to the demands of the environment, for example, speed, direction or distance. Previous research has shown that arm movement kinematics is optimally tuned to take advantage of gravity effects and minimize muscle effort in various pointing directions and gravity contexts. Here we build upon these results and focus on muscular adjustments. We used Machine Learning to analyze the ensemble activities of multiple muscles recorded during pointing in various directions. The advantage of such a technique would be the observation of patterns in collective muscular activity that may not be noticed using univariate statistics. By providing an index of multimuscle activity, the Machine Learning (ML) analysis brought to light several features of tuning for pointing direction. In attempting to trace tuning curves, all comparisons were done with respects to pointing in the horizontal, gravity free plane. We demonstrated that tuning for direction does not take place in a uniform fashion but in a modular manner in which some muscle groups play a primary role. The antigravity muscles were more finely tuned to pointing direction than the gravity muscles. Of note, was their tuning during the first half of downward pointing. As the antigravity muscles were deactivated during this phase, it supported the idea that deactivation is not an on-off function but is tuned to pointing direction. Further support for the tuning of the negative portions of the phasic EMG was provided by the observation of progressively improving classification accuracies with increasing angular distance from the horizontal. We also demonstrated that the durations of these negative phases, without information on their amplitudes, is tuned to pointing directions. Overall, these results show that the motor system tunes muscle commands to exploit gravity effects and reduce muscular effort. It quantitatively demonstrates that phasic EMG negativity is an essential feature of muscle control. The ML analysis was done using Linear Discriminant analysis (LDA) and Support Vector Machines (SVM). The two led to the same conclusions concerning the movements being investigated, hence showing that the former, computationally inexpensive technique is a viable tool for regular investigation of motor control.
Collapse
|
4
|
Niyo G, Almofeez LI, Erwin A, Valero-Cuevas FJ. An alpha- to gamma-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement: A computational study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570843. [PMID: 38106121 PMCID: PMC10723443 DOI: 10.1101/2023.12.08.570843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The primary motor cortex does not uniquely or directly produce alpha motoneurone (α-MN) drive to muscles during voluntary movement. Rather, α-MN drive emerges from the synthesis and competition among excitatory and inhibitory inputs from multiple descending tracts, spinal interneurons, sensory inputs, and proprioceptive afferents. One such fundamental input is velocity-dependent stretch reflexes in lengthening muscles, which should be inhibited to enable voluntary movement. It remains an open question, however, the extent to which unmodulated stretch reflexes disrupt voluntary movement, and whether and how they are inhibited in limbs with numerous multi-articular muscles. We used a computational model of a Rhesus Macaque arm to simulate movements with feedforward α-MN commands only, and with added velocity-dependent stretch reflex feedback. We found that velocity-dependent stretch reflex caused movement-specific, typically large and variable disruptions to arm movements. These disruptions were greatly reduced when modulating velocity-dependent stretch reflex feedback (i) as per the commonly proposed (but yet to be clarified) idealized alpha-gamma (α-γ) co-activation or (ii) an alternative α-MN collateral projection to homonymous γ-MNs. We conclude that such α-MN collaterals are a physiologically tenable, but previously unrecognized, propriospinal circuit in the mammalian fusimotor system. These collaterals could still collaborate with α-γ co-activation, and the few skeletofusimotor fibers (β-MNs) in mammals, to create a flexible fusimotor ecosystem to enable voluntary movement. By locally and automatically regulating the highly nonlinear neuro-musculo-skeletal mechanics of the limb, these collaterals could be a critical low-level enabler of learning, adaptation, and performance via higher-level brainstem, cerebellar and cortical mechanisms.
Collapse
Affiliation(s)
- Grace Niyo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA
| | - Lama I Almofeez
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA
| | - Andrew Erwin
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA, USA
- Mechanical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH, USA
| | - Francisco J Valero-Cuevas
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Thomas E, Ali FB, Tolambiya A, Chambellant F, Gaveau J. Too much information is no information: how machine learning and feature selection could help in understanding the motor control of pointing. Front Big Data 2023; 6:921355. [PMID: 37546547 PMCID: PMC10399757 DOI: 10.3389/fdata.2023.921355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of this study was to develop the use of Machine Learning techniques as a means of multivariate analysis in studies of motor control. These studies generate a huge amount of data, the analysis of which continues to be largely univariate. We propose the use of machine learning classification and feature selection as a means of uncovering feature combinations that are altered between conditions. High dimensional electromyogram (EMG) vectors were generated as several arm and trunk muscles were recorded while subjects pointed at various angles above and below the gravity neutral horizontal plane. We used Linear Discriminant Analysis (LDA) to carry out binary classifications between the EMG vectors for pointing at a particular angle, vs. pointing at the gravity neutral direction. Classification success provided a composite index of muscular adjustments for various task constraints-in this case, pointing angles. In order to find the combination of features that were significantly altered between task conditions, we conducted a post classification feature selection i.e., investigated which combination of features had allowed for the classification. Feature selection was done by comparing the representations of each category created by LDA for the classification. In other words computing the difference between the representations of each class. We propose that this approach will help with comparing high dimensional EMG patterns in two ways; (i) quantifying the effects of the entire pattern rather than using single arbitrarily defined variables and (ii) identifying the parts of the patterns that convey the most information regarding the investigated effects.
Collapse
Affiliation(s)
- Elizabeth Thomas
- INSERMU1093, UFR STAPS, Université de Bourgogne Franche Comté, Dijon, France
| | - Ferid Ben Ali
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Arvind Tolambiya
- Applied Intelligence Hub, Accenture Solutions Private Ltd., Hyderabad, Telangana, India
| | - Florian Chambellant
- INSERMU1093, UFR STAPS, Université de Bourgogne Franche Comté, Dijon, France
| | - Jérémie Gaveau
- INSERMU1093, UFR STAPS, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
6
|
Mulla DM, Keir PJ. Neuromuscular control: from a biomechanist's perspective. Front Sports Act Living 2023; 5:1217009. [PMID: 37476161 PMCID: PMC10355330 DOI: 10.3389/fspor.2023.1217009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Understanding neural control of movement necessitates a collaborative approach between many disciplines, including biomechanics, neuroscience, and motor control. Biomechanics grounds us to the laws of physics that our musculoskeletal system must obey. Neuroscience reveals the inner workings of our nervous system that functions to control our body. Motor control investigates the coordinated motor behaviours we display when interacting with our environment. The combined efforts across the many disciplines aimed at understanding human movement has resulted in a rich and rapidly growing body of literature overflowing with theories, models, and experimental paradigms. As a result, gathering knowledge and drawing connections between the overlapping but seemingly disparate fields can be an overwhelming endeavour. This review paper evolved as a need for us to learn of the diverse perspectives underlying current understanding of neuromuscular control. The purpose of our review paper is to integrate ideas from biomechanics, neuroscience, and motor control to better understand how we voluntarily control our muscles. As biomechanists, we approach this paper starting from a biomechanical modelling framework. We first define the theoretical solutions (i.e., muscle activity patterns) that an individual could feasibly use to complete a motor task. The theoretical solutions will be compared to experimental findings and reveal that individuals display structured muscle activity patterns that do not span the entire theoretical solution space. Prevalent neuromuscular control theories will be discussed in length, highlighting optimality, probabilistic principles, and neuromechanical constraints, that may guide individuals to families of muscle activity solutions within what is theoretically possible. Our intention is for this paper to serve as a primer for the neuromuscular control scientific community by introducing and integrating many of the ideas common across disciplines today, as well as inspire future work to improve the representation of neural control in biomechanical models.
Collapse
|
7
|
Muffel T, Shih PC, Kalloch B, Nikulin V, Villringer A, Sehm B. Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients. Brain Stimul 2022; 15:509-522. [DOI: 10.1016/j.brs.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
|
8
|
Omura L, Fukashiro S, Yoshioka S. Explaining "What for" in Motion Analysis Research: A Proposal for a Counterfactual Framework That Is Slightly Different From the Theory of Causation. Front Sports Act Living 2021; 3:699322. [PMID: 34859202 PMCID: PMC8631350 DOI: 10.3389/fspor.2021.699322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
In motion analysis research, the methodology for estimating the physical processes of human movement is highly developed, but the methodology for interpreting such data is relatively undeveloped. One of the aims of this paper is to demonstrate the importance of developing a conceptual basis for interpreting data about the physical processes of body movement. In this conceptual study, one topic was discussed as a central question: what it means to answer the question what a certain movement technique is aimed for. We first introduced the distinction between explanations from the perspective of causes and explanations from the perspective of purposes as a mode of explaining events, and pointed out the importance of explanations from the perspective of purposes. We next argued that by taking the perspective of whether a given movement technique leads to a desired outcome in comparison to other movement techniques, we can expect to interpret what a given movement technique is for based on objectively observable information rather than the subjective intentions of the athlete. In addition, we discussed how the criterion movement patterns should be defined when assessing the fitness for purpose of a given movement technique in terms of its consequences. In this regard, our argument is that it is necessary to take into account that the exact same movement pattern cannot be performed every time, even for the same motor task, and that there are multiple options for how to define the set of possible movement patterns that can be performed. Our discussion reveals the peculiarity of grasping the meaning of movement techniques, and therefore suggests that there is a substantial need for motion analysis researchers to deepen their conceptual analysis to understand the nature of this issue.
Collapse
Affiliation(s)
- Leon Omura
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | | | | |
Collapse
|
9
|
Abstract
Lower extremity multi-joint strength curves tend not to evaluate individual joint contributions to endpoint force in maximum effort isometric whole limb extension. Therefore, the purpose of this study was to measure the contribution of the hip, knee, and ankle to vertical ground reaction force in maximum effort isometric whole limb extension at various postures. An effect of posture on the contributions of the hip, knee, and ankle to vertical ground reaction force was found (F(3,96) = 85.31, p < 0.0001; F(3,96) = 21.32, p < 0.0001; F(3,96) = 130.61, p < 0.0001 for the hip, knee, and ankle, respectively). The hip and knee contributed most to vertical endpoint force when the lower limb was in a flexed posture, and their contributions decreased when posture was extended. Conversely, the ankle contributed least when the limb was flexed, but its contribution increased as posture was changed from flexed to more extended. In comparison to recent research involving induced acceleration analysis, it appears that the hip, knee, and ankle utilize the same force allocation strategy in multi-joint maximum effort isometric leg extensions and activities of daily living.
Collapse
|
10
|
Gaveau J, Grospretre S, Berret B, Angelaki DE, Papaxanthis C. A cross-species neural integration of gravity for motor optimization. SCIENCE ADVANCES 2021; 7:7/15/eabf7800. [PMID: 33827823 PMCID: PMC8026131 DOI: 10.1126/sciadv.abf7800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Recent kinematic results, combined with model simulations, have provided support for the hypothesis that the human brain shapes motor patterns that use gravity effects to minimize muscle effort. Because many different muscular activation patterns can give rise to the same trajectory, here, we specifically investigate gravity-related movement properties by analyzing muscular activation patterns during single-degree-of-freedom arm movements in various directions. Using a well-known decomposition method of tonic and phasic electromyographic activities, we demonstrate that phasic electromyograms (EMGs) present systematic negative phases. This negativity reveals the optimal motor plan's neural signature, where the motor system harvests the mechanical effects of gravity to accelerate downward and decelerate upward movements, thereby saving muscle effort. We compare experimental findings in humans to monkeys, generalizing the Effort-optimization strategy across species.
Collapse
Affiliation(s)
- Jeremie Gaveau
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sidney Grospretre
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- EA4660-C3S Laboratory-Culture, Sport, Health and Society Univ. Bourgogne Franche-Comté, Besançon, France
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
- Institut Universitaire de France (IUF) , Paris, France
| | | | - Charalambos Papaxanthis
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| |
Collapse
|
11
|
Shoulder muscle activation strategies differ when lifting or lowering a load. Eur J Appl Physiol 2020; 120:2417-2429. [PMID: 32803382 DOI: 10.1007/s00421-020-04464-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Lowering a load could be associated with abnormal shoulder and scapular motion. We tested the hypothesis that lowering a load involves different shoulder muscle coordination strategies compared to lifting a load. METHODS EMG activity of 13 muscles was recorded in 30 healthy volunteers who lifted and lowered a 6, 12 or 18 kg box between three shelves. Kinematics, EMG levels and muscle synergies, extracted using non-negative matrix factorization, were analyzed. RESULTS We found greater muscle activity level during lowering in four muscles (+ 1-2% MVC in anterior deltoid, biceps brachii, serratus anterior and pectoralis major). The movements were performed faster during lifting (18.2 vs. 15.9 cm/s) but with similar hand paths and segment kinematics. The number of synergies was the same in both tasks. Two synergies were identified in ~ 75% of subjects, and one synergy in the others. Synergy #1 mainly activated prime movers' muscles, while synergy #2 co-activated several antagonist muscles. Synergies' structure was similar between lifting and lowering (Pearson's r ≈ 0.9 for synergy #1 and 0.7-08 for synergy #2). Synergy #2 was more activated during lowering and explained the greater activity observed in anterior deltoid, serratus anterior and pectoralis. CONCLUSION Lifting and lowering a load were associated with similar synergy structure. In 3/4 of subjects, lowering movements involved greater activation of a "multiple antagonists" synergy. The other subjects co-contracted all shoulder muscles as a unit in both conditions. These inter-individual differences should be investigated in the occurrence of shoulder musculoskeletal disorders.
Collapse
|
12
|
Nguyen AT, Xu J, Luu DK, Zhao Q, Yang Z. Advancing System Performance with Redundancy: From Biological to Artificial Designs. Neural Comput 2019; 31:555-573. [PMID: 30645181 DOI: 10.1162/neco_a_01166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Redundancy is a fundamental characteristic of many biological processes such as those in the genetic, visual, muscular, and nervous systems, yet its driven mechanism has not been fully comprehended. Until recently, the only understanding of redundancy is as a mean to attain fault tolerance, which is reflected in the design of many man-made systems. On the contrary, our previous work on redundant sensing (RS) has demonstrated an example where redundancy can be engineered solely for enhancing accuracy and precision. The design was inspired by the binocular structure of human vision, which we believe may share a similar operation. In this letter, we present a unified theory describing how such utilization of redundancy is feasible through two complementary mechanisms: representational redundancy (RPR) and entangled redundancy (ETR). We also point out two additional examples where our new understanding of redundancy can be applied to justify a system's superior performance. One is the human musculoskeletal system (HMS), a biological instance, and the other is the deep residual neural network (ResNet), an artificial counterpart. We envision that our theory would provide a framework for the future development of bio-inspired redundant artificial systems, as well as assist studies of the fundamental mechanisms governing various biological processes.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
| | - Jian Xu
- Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
| | - Diu Khue Luu
- Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
| | - Qi Zhao
- Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
| | - Zhi Yang
- Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
| |
Collapse
|
13
|
Scarborough DM, Bassett AJ, Mayer LW, Berkson EM. Kinematic sequence patterns in the overhead baseball pitch. Sports Biomech 2018; 19:569-586. [DOI: 10.1080/14763141.2018.1503321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Donna Moxley Scarborough
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
- School of Rehabilitation Sciences, MGH Institute of Health Professions, Charlestown, MA, USA
| | - Ashley J. Bassett
- Harvard Combined Orthopaedic Residency, Harvard University, Boston, MA, USA
| | - Lucas W. Mayer
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Eric M. Berkson
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
14
|
Marjaninejad A, Annigeri R, Valero-Cuevas FJ. Model-Free Control of Movement in a Tendon-Driven Limb via a Modified Genetic Algorithm. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1767-1770. [PMID: 30440737 DOI: 10.1109/embc.2018.8512616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tendon-driven systems have many benefits over other actuation strategies such as torque-driven systems; however, their over-determined nature and posture-dependent actuation presents strong constraints on their control. Also, parameters or even exact structure of the model in these systems, especially in the biological ones, are normally not clear to the controller. Here, we propose a modified Genetic Algorithm that provides the tendon excursion values for the limb to follow a desired trajectory. Our results show that the proposed algorithm was able to accurately follow the desired trajectory without the model of the system being exposed to it. We believe that this method can enable biologically inspired tendon-driven mechanisms with variable mechanical structures to autonomously control their movements.
Collapse
|
15
|
Valero-Cuevas FJ, Santello M. On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J Neuroeng Rehabil 2017; 14:101. [PMID: 29017508 PMCID: PMC5635506 DOI: 10.1186/s12984-017-0305-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/04/2017] [Indexed: 12/31/2022] Open
Abstract
Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.
Collapse
Affiliation(s)
- Francisco J Valero-Cuevas
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA.
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| | - Marco Santello
- School of Biological and Health Systems Engineering Arizona State University, Tempe, AZ, USA
| |
Collapse
|