1
|
Nukuto K, Gale T, Yamamoto T, Kamada K, Irrgang JJ, Musahl V, Anderst W. Reliability and changes in knee cartilage T2 relaxation time from 6 to 24 months after anatomic anterior cruciate ligament reconstruction. J Orthop Res 2024; 42:2683-2692. [PMID: 39032093 DOI: 10.1002/jor.25939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
The objectives of this study were to evaluate the reliability of cartilage T2 relaxation time measurements and to identify focal changes in T2 relaxation on the affected knee from 6 to 24 months after anatomic anterior cruciate ligament reconstruction (ACLR). Data from 41 patients who received anatomic ACLR were analyzed. A bilateral 3.0-T MRI was acquired 6 and 24 months after ACLR. T2 relaxation time was measured in subregions of the femoral condyle and the tibial plateau. The root-mean-square coefficient of variation (RMSCV) was calculated to evaluate the reliability of T2 relaxation time in the contralateral knee. Subregion changes in the affected knee T2 relaxation time were identified using the contralateral knee as a reference. The superficial and full thickness layers of the central and inner regions showed good reliability. Conversely, the outer regions on the femoral side and regions in the deep layers showed poor reliability. T2 relaxation time increased in only 3 regions on the affected knee when controlling for changes in the contralateral knee, while changes in T2 relaxation time were identified in 14 regions when not using the contralateral knee as a reference. In conclusion, evaluation of cartilage degeneration by T2 relaxation time after ACLR is most reliable for central and inner cartilage regions. Cartilage degeneration occurs in the central and outer regions of the lateral femoral condyle from 6 to 24 months after anatomic ACLR.
Collapse
Affiliation(s)
- Koji Nukuto
- Department of Orthopedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tom Gale
- Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tetsuya Yamamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohei Kamada
- Department of Orthopedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James J Irrgang
- Department of Orthopedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Volker Musahl
- Department of Orthopedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - William Anderst
- Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Shi B, Barzan M, Nasseri A, Maharaj JN, Diamond LE, Saxby DJ. Automatic generation of knee kinematic models from medical imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108370. [PMID: 39180912 DOI: 10.1016/j.cmpb.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND OBJECTIVE Three-dimensional spatial mechanisms have been used to accurately predict passive knee kinematics, and have shown potential to be used in optimized multibody kinematic models. Such multi-body models are anatomically consistent and can accurately predict passive knee kinematics, but require extensive medical image processing and thus are not widely adopted. This study aimed to automate the generation of kinematic models of tibiofemoral (TFJ) and patellofemoral (PFJ) joints from segmented magnetic resonance imaging (MRI) and compare them against a corresponding manual pipeline. METHODS From segmented MRI of eight healthy participants (four females; aged 14.0 ± 2.6 years), geometric parameters (i.e., articular surfaces, ligament attachments) were determined both automatically and manually, and then assembled into TFJ and PFJ kinematic models to predict passive kinematics. The TFJ model was a six-link mechanism with deformable ligamentous constraints, whereas PFJ was a modified hinge. The ligament length changes through TFJ flexion were prescribed to literature strain profile. The geometric parameters were optimized to ensure physiological kinematic predictions through a Multiple Objective Particle Swarm Optimization. RESULTS Geometric parameters showed strong agreement between automatic and manual pipelines (median error of 2.8 mm for anatomical landmarks and 1.5 mm for ligament lengths). Predicted TFJ and PFJ kinematics from the two pipelines were not statistically different, except for tibial superior/inferior translation near terminal TFJ extension. The TFJ kinematics predicted from the automatic pipeline had mean errors of 3.6° and 12.4° for adduction/abduction and internal/external rotation, respectively, and <7 mm mean translational error compared to the manual pipeline. Predicted PFJ had <9° mean rotational errors and <6 mm mean translational errors. CONCLUSIONS The automatic pipeline developed and presented here can predict passive knee kinematics comparable to a manual pipeline, but removes laborious manual processing and provides a systematic approach to model creation.
Collapse
Affiliation(s)
- Beichen Shi
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Gold Coast campus Griffith University QLD 4222, Australia; School of Health Sciences and Social Work, Gold Coast campus Griffith University, Parklands Dr Southport QLD 4222, Australia.
| | - Martina Barzan
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Gold Coast campus Griffith University QLD 4222, Australia; School of Health Sciences and Social Work, Gold Coast campus Griffith University, Parklands Dr Southport QLD 4222, Australia
| | - Azadeh Nasseri
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Gold Coast campus Griffith University QLD 4222, Australia; School of Health Sciences and Social Work, Gold Coast campus Griffith University, Parklands Dr Southport QLD 4222, Australia
| | - Jayishni N Maharaj
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Gold Coast campus Griffith University QLD 4222, Australia; School of Health Sciences and Social Work, Gold Coast campus Griffith University, Parklands Dr Southport QLD 4222, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Gold Coast campus Griffith University QLD 4222, Australia; School of Health Sciences and Social Work, Gold Coast campus Griffith University, Parklands Dr Southport QLD 4222, Australia
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Gold Coast campus Griffith University QLD 4222, Australia; School of Health Sciences and Social Work, Gold Coast campus Griffith University, Parklands Dr Southport QLD 4222, Australia
| |
Collapse
|
3
|
Veerman QWT, Ten Heggeler RM, Tuijthof GJM, de Graaff F, Fluit R, Hoogeslag RAG. High variability exists in 3D leg alignment analysis, but underlying principles that might lead to agreement on a universal framework could be identified: A systematic review. Knee Surg Sports Traumatol Arthrosc 2024. [PMID: 39460613 DOI: 10.1002/ksa.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE To (1) investigate the hypothesis that there is high variability in the reported methods to derive axes and joint orientations from three-dimensional (3D) bone models to (a) perform 3D knee-related leg alignment analysis and (b) define coordinate systems for the femur, tibia and leg and (2) identify underlying principles that might lead to agreement on a universal 3D leg alignment analysis framework. METHODS A systematic review of the literature between January 2006 and June 2024 was performed. Articles explicitly reporting methods to derive axes and joint orientations from CT-based 3D bone models for alignment parameters and/or coordinate systems of the femur, tibia and leg were included. Study characteristics and reported methods were extracted and presented as a qualitative synthesis. RESULTS A total of 93 studies were included. There was high variability in the reported methods to derive axes and joint orientations from 3D bone models. Nevertheless, the reported methods could be categorized into four groups, and several underlying principles of the four groups could be identified. Furthermore, the definitions of femoral and tibial coordinate systems were most frequently based on the mechanical axis (femoral, 13/19 [68%]; tibial, 13/26 [50%]) and a central medial-lateral axis (femoral, 16/19 [84%]; tibial, 12/26 [46%]); no leg coordinate system was reported. Interestingly, of the included studies that reported on leg alignment parameters (76/93, 82%), only a minority reported expressing these in a complete coordinate system (25/76, 33%). CONCLUSION There is high variability in 3D knee-related leg alignment analysis. Therefore, universal 3D reference values for alignment parameters cannot yet be defined, and comparison of alignment parameter values between different studies is impossible. However, several underlying principles to the reported methods were identified, which could serve to reach more agreement on a future universal 3D framework for leg alignment analysis. LEVEL OF EVIDENCE Level I (1).
Collapse
Affiliation(s)
- Quinten W T Veerman
- OCON Centre for Orthopaedic Surgery and Sports Medicine, Hengelo, the Netherlands
- Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Romy M Ten Heggeler
- OCON Centre for Orthopaedic Surgery and Sports Medicine, Hengelo, the Netherlands
- Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | | | - Feike de Graaff
- OCON Centre for Orthopaedic Surgery and Sports Medicine, Hengelo, the Netherlands
| | - René Fluit
- Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Roy A G Hoogeslag
- OCON Centre for Orthopaedic Surgery and Sports Medicine, Hengelo, the Netherlands
| |
Collapse
|
4
|
Sohail M, Kim HS. Bridging theory and practice: A comprehensive algorithm for imageless total knee arthroplasty. Comput Biol Med 2024; 177:108662. [PMID: 38820780 DOI: 10.1016/j.compbiomed.2024.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Total knee arthroplasty (TKA) is a surgical procedure to treat severe knee osteoarthritis. Among several techniques available for performing TKA, imageless TKA is known for achieving precise alignment while minimizing invasiveness. This work proposes a comprehensive algorithm for imageless TKA device to calculate the varus/valgus and flexion/extension angles, as well as resection depths for cutting planes at distal femur and proximal tibia. Moreover, the algorithm calculates the hip-knee-ankle (HKA) and flexion angles of the leg. Initially, the proposed algorithm was validated in a virtual environment using a CT-scanned bone model in Solidworks. Subsequently, for the real-world validation, a SoftBone model was resected with conventional intra and extramedullary rods and cross-checked with the proposed algorithm. For the third validation, another SoftBone model was resected with the proposed algorithm and cuts were measured with a vernier caliper. During this experiment, there was an error of approximately 1 mm for both femoral and tibial resection cases when using an infrared camera with an accuracy of ±0.5 mm. However, this error could be reduced using an infrared camera with higher accuracy.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Heung Soo Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
5
|
Johnson CC, Dzewaltowski AC, Dever DE, Krajewski KT, Rai A, Ahamed NU, Allison KF, Flanagan SD, Graham SM, Lovalekar M, Anderst WJ, Connaboy C. Load carriage changes tibiofemoral arthrokinematics during ambulatory tasks in recruit-aged women. Sci Rep 2024; 14:9542. [PMID: 38664550 PMCID: PMC11045865 DOI: 10.1038/s41598-024-60187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The introduction of women into U.S. military ground close combat roles requires research into sex-specific effects of military training and operational activities. Knee osteoarthritis is prevalent among military service members; its progression has been linked to occupational tasks such as load carriage. Analyzing tibiofemoral arthrokinematics during load carriage is important to understand potentially injurious motion and osteoarthritis progression. The study purpose was to identify effects of load carriage on knee arthrokinematics during walking and running in recruit-aged women. Twelve healthy recruit-aged women walked and ran while unloaded (bodyweight [BW]) and carrying additional + 25%BW and + 45%BW. Using dynamic biplane radiography and subject-specific bone models, tibiofemoral arthrokinematics, subchondral joint space and center of closest contact location between subchondral bone surfaces were analyzed over 0-30% stance (separate one-way repeated measures analysis of variance, load by locomotion). While walking, medial compartment contact location was 5% (~ 1.6 mm) more medial for BW than + 45%BW at foot strike (p = 0.03). While running, medial compartment contact location was 4% (~ 1.3 mm) more lateral during BW than + 25%BW at 30% stance (p = 0.04). Internal rotation was greater at + 45%BW compared to + 25%BW (p < 0.01) at 30% stance. Carried load affects tibiofemoral arthrokinematics in recruit-aged women. Prolonged load carriage could increase the risk of degenerative joint injury in physically active women.
Collapse
Affiliation(s)
- Camille C Johnson
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
- Orthopaedic Biodynamics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex C Dzewaltowski
- Center of Lower Extremity Ambulatory Research, Rosalind Franklin University of Medicine & Science, Chicago, IL, USA
| | - Dennis E Dever
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kellen T Krajewski
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ajinkya Rai
- Orthopaedic Biodynamics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nizam U Ahamed
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katelyn F Allison
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shawn D Flanagan
- Center of Lower Extremity Ambulatory Research, Rosalind Franklin University of Medicine & Science, Chicago, IL, USA
| | - Scott M Graham
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Mita Lovalekar
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Anderst
- Orthopaedic Biodynamics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chris Connaboy
- Center of Lower Extremity Ambulatory Research, Rosalind Franklin University of Medicine & Science, Chicago, IL, USA.
| |
Collapse
|
6
|
Princelle D, Davico G, Viceconti M. Comparative validation of two patient-specific modelling pipelines for predicting knee joint forces during level walking. J Biomech 2023; 159:111758. [PMID: 37659354 DOI: 10.1016/j.jbiomech.2023.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 09/04/2023]
Abstract
Over the past few years, the use of computer models and simulations tailored to the patient's physiology to assist clinical decision-making has increased enormously.While several pipelines to develop personalized models exist, their adoption on a large scale is still limited due to the required niche computational skillset and the lengthy operations required. Novel toolboxes, such as STAPLE, promise to streamline and expedite the development of image-based skeletal lower limb models. STAPLE-generated models can be rapidly generated, with minimal user input, and present similar joint kinematics and kinetics compared to models developed employing the established INSIGNEO pipeline. Yet, it is unclear how much the observed discrepancies scale up and affect joint contact force predictions. In this study, we compared image-based musculoskeletal models developed (i) with the INSIGNEO pipeline and (ii) with a semi-automated pipeline that combines STAPLE and nmsBuilder, and assessed their accuracy against experimental implant data.Our results showed that both pipelines predicted similar total knee joint contact forces between one another in terms of profiles and average values, characterized by a moderately high level of agreement with the experimental data. Nonetheless, the Student t-test revealed statistically significant differences between both pipelines. Of note, the STAPLE-based pipeline required considerably less time than the INSIGNEO pipeline to generate a musculoskeletal model (i.e., 60 vs 160 min). This is likely to open up opportunities for the use of personalized musculoskeletal models in clinical practice, where time is of the essence.
Collapse
Affiliation(s)
- Domitille Princelle
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy.
| | - Giorgio Davico
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy.
| | - Marco Viceconti
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy
| |
Collapse
|
7
|
Keast M, Bonacci J, Fox A. Variability in tibia-fibular geometry is associated with increased tibial strain from running loads. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230262. [PMID: 37771963 PMCID: PMC10523080 DOI: 10.1098/rsos.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Variation in tibial geometry may alter strain magnitude and distribution during locomotion. We investigated the effect of tibia-fibula geometric variations on tibial strain with running loads applied at various speeds. Participant-specific three-dimensional models of the tibia-fibula were created using lower limb computed tomography scans from 30 cadavers. Finite-element models were developed in FEBio, and running loads from 3, 4 and 5 m s-1 were applied to extract effective strain from the tibial shaft. Linear regression models evaluated the relationship between geometric characteristics and effective strain along the tibial shaft. We found a statistically significant positive relationship between: (i) increased thickness of the midshaft to upper tibia with increased condyle prominence and effective strain at points along the distal anterolateral and proximal posterior regions of the tibial shaft; and (ii) increased midshaft cortical thickness and effective strain at points along the medial aspect of the distal tibial shaft. It is possible that increased thickness in the more proximal region of the tibia causes strain to redistribute to areas that are more susceptible to the applied loads. A thickness imbalance between the upper and distal portions of the tibial shaft could have a negative impact on tibial stress injury risk.
Collapse
Affiliation(s)
- Meghan Keast
- School of Exercise and Nutrition Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Victoria, Australia
| | - Jason Bonacci
- School of Exercise and Nutrition Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Victoria, Australia
| | - Aaron Fox
- School of Exercise and Nutrition Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Victoria, Australia
| |
Collapse
|
8
|
Sohail M, Kim JY, Park J, Kim HS, Lee J. Femoral coordinate system based on articular surfaces: Implications for computer-assisted knee arthroplasty. Comput Biol Med 2023; 163:107229. [PMID: 37413852 DOI: 10.1016/j.compbiomed.2023.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/28/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Osteoarthritis knee can be restored by total knee arthroplasty (TKA). Imageless TKA requires several anatomical points to construct a reference coordinate system to measure bone resections and implant placement. Inaccuracies in the definition of the coordinate system lead to malalignment and failure of the implant. While the surgical transepicondylar axis (sTEA) is a reliable anatomical axis to define the lateromedial axis for the femoral coordinate system (FCS), the presence of the collateral ligaments and deterioration of the medial sulcus (MS) make the registration of sTEA a challenging task. In this work, sTEA is assigned using the articular surfaces of the femoral condyles, independent of the lateral epicondyle (LE) and MS. A single 3D arc is marked on each condyle, which is transformed into a 2D arc to get the best-fit curve according to the profile of condyles. The turning point of each best-fit curve, when transformed back to 3D, defines an axis parallel to sTEA. The condyles-based sTEA is measured experimentally on a 3D-printed bone using an Optitrack tracking setup. Using the proposed method, the angle between the aTEA, sTEA, and Whiteside's line was (3.77, 0.55, and 92.72)°, respectively. The proposed method provides the same level of accuracy and improves the anatomical points registration efficiency, as there is no need to register the LE or MS.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Jun Young Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Jaehyun Park
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Heung Soo Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| | - Jaehun Lee
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
9
|
Valerio T, Vigouroux L, Goislard de Monsabert B, De Villeneuve Bargemon JB, Milan JL. Relationship between trapeziometacarpal joint morphological parameters and joint contact pressure: a possible factor of osteoarthritis development. J Biomech 2023; 152:111573. [PMID: 37037117 DOI: 10.1016/j.jbiomech.2023.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
The trapeziometacarpal (TMC) joint is the one of the hand joints that is most affected by osteoarthritis (OA). The objective of this study was to determine if specific morphological parameters could be related to the amount of pressure endured by the joint which is one of the factors contributing to the development of this pathology. We developed 15 individualized 3D computer aided design (CAD) models of the TMC joint, each generated from the CT scan of a different participant. For each participant, we measured several crucial morphological parameters: the width and length of the trapezium bone and dorso-volar and ulno-radial curvature, of the trapezium and the metacarpal bone. Each CAD model was converted into a finite element model, of both bones and the cartilage located in between. The joint forces applied during pinch grip and power grip tasks were then applied in order to estimate the contact pressures on joint cartilage for each model. Correlations between joint contact pressures and morphology of the trapezium and the metacarpal bone were then analysed. Important variations of TMC joint pressures were observed. For both pinch and power grip tasks, the strongest correlation with joint contact pressure was with the dorso-volar curvature of the trapezium bone. Our findings indicate that dorso-volar curvature of the trapezium bone has a significant impact on mechanical loadings on the TMC joint. This contributes to understanding the prevalence of OA in certain patients.
Collapse
Affiliation(s)
- Thomas Valerio
- Aix-Marseille University, CNRS, ISM, Marseille, France; Aix-Marseille University, APHM, CNRS, ISM, St Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, Marseille, France.
| | | | | | | | - Jean-Louis Milan
- Aix-Marseille University, CNRS, ISM, Marseille, France; Aix-Marseille University, APHM, CNRS, ISM, St Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, Marseille, France
| |
Collapse
|
10
|
Thorhauer E, French M, Kimura T, Ledoux WR. A Cadaveric Comparison of the Kinematic and Anatomical Axes and Arthrokinematics of the Metatarsosesamoidal and First Metatarsophalangeal Joints. J Biomech Eng 2023; 145:1148497. [PMID: 36301250 DOI: 10.1115/1.4056060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/23/2022] [Indexed: 12/13/2022]
Abstract
Presently, developments in weightbearing computed tomography and biplanar fluoroscopy technologies offer exciting avenues for investigating normative and pathologic foot function with increasing precision. Still, data quantifying sesamoid bone and proximal phalange motion are currently sparse. To express joint kinematics and compare various clinical cohorts, future studies of first ray motion will necessitate robust coordinate frames that respect the variations in underlying anatomy while also aligning closely with the functional, physiological axes of motion. These activity-dependent functional axes may be represented by a mean helical axis of the joint motion. Our cadaveric study quantified joint kinematics from weightbearing computed tomography scans during simulated toe lift and heel rise tasks. We compared the spatial orientations of the mean finite helical axes of the metatarsosesamoidal and metatarsophalangeal joints to the primary joint axis of two relevant methods for defining metatarsal coordinate frames: inertial axes and fitting of geometric primitives. The resultant kinematics exhibited less crosstalk when using a metatarsal coordinate system based on fitting cylindrical primitives to the bony anatomy compared to using principal component axes. Respective metatarsophalangeal and metatarsosesamoidal arthrokinematic contact paths and instantaneous centers of rotation were similar between activities and agree well with currently published data. This study outlines a methodology for quantitatively assessing the efficacy and utility of various anatomical joint coordinate system definitions. Improvements in our ability to characterize the shape and motion of foot bones in the context of functional tasks will elucidate their biomechanical roles and aid clinicians in refining treatment strategies.
Collapse
Affiliation(s)
- Eric Thorhauer
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195; RR&D Center for Limb Loss and Mobility (CLiMB) Veterans Affairs Puget Sound Health Care System, ms 151, 1660 South Columbian Way, Seattle, WA 98108
| | - Mackenzie French
- School of Medicine, Department of Mechanical Engineering, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195
| | - Tadashi Kimura
- Department of Orthopaedic Surgery, School of Medicine, The Jikei University, Minato City, 3 Chome-25-8 Nishishinbashi, Tokyo 105-8461, Japan
| | - William R Ledoux
- Departments of Mechanical Engineering, Orthopaedics & Sports Medicine, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195; RR&D Center for Limb Loss and Mobility (CLiMB) Veterans Affairs Puget Sound Health Care System, ms 151, 1660 South Columbian Way, Seattle, WA 98108
| |
Collapse
|
11
|
Kuiper RJA, Seevinck PR, Viergever MA, Weinans H, Sakkers RJB. Automatic Assessment of Lower-Limb Alignment from Computed Tomography. J Bone Joint Surg Am 2023; 105:700-712. [PMID: 36947661 DOI: 10.2106/jbjs.22.00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Preoperative planning of lower-limb realignment surgical procedures necessitates the quantification of alignment parameters by using landmarks placed on medical scans. Conventionally, alignment measurements are performed on 2-dimensional (2D) standing radiographs. To enable fast and accurate 3-dimensional (3D) planning of orthopaedic surgery, automatic calculation of the lower-limb alignment from 3D bone models is required. The goal of this study was to develop, validate, and apply a method that automatically quantifies the parameters defining lower-limb alignment from computed tomographic (CT) scans. METHODS CT scans of the lower extremities of 50 subjects were both manually and automatically segmented. Thirty-two manual landmarks were positioned twice on the bone segmentations to assess intraobserver reliability in a subset of 20 subjects. The landmarks were also positioned automatically using a shape-fitting algorithm. The landmarks were then used to calculate 25 angles describing the lower-limb alignment for all 50 subjects. RESULTS The mean absolute difference (and standard deviation) between repeat measurements using the manual method was 2.01 ± 1.64 mm for the landmark positions and 1.05° ± 1.48° for the landmark angles, whereas the mean absolute difference between the manual and fully automatic methods was 2.17 ± 1.37 mm for the landmark positions and 1.10° ± 1.16° for the landmark angles. The manual method required approximately 60 minutes of manual interaction, compared with 12 minutes of computation time for the fully automatic method. The intraclass correlation coefficient showed good to excellent reliability between the manual and automatic assessments for 23 of 25 angles, and the same was true for the intraobserver reliability in the manual method. The mean for the 50 subjects was within the expected range for 18 of the 25 automatically calculated angles. CONCLUSIONS We developed a method that automatically calculated a comprehensive range of 25 measurements that defined lower-limb alignment in considerably less time, and with differences relative to the manual method that were comparable to the differences between repeated manual assessments. This method could thus be used as an efficient alternative to manual assessment of alignment. LEVEL OF EVIDENCE Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Ruurd J A Kuiper
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter R Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- MRIguidance B.V., Utrecht, the Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Harrie Weinans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ralph J B Sakkers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
12
|
Wang W, Zhou H, Yan Y, Cheng X, Yang P, Gan L, Kuang S. An automatic extraction method on medical feature points based on PointNet++ for robot-assisted knee arthroplasty. Int J Med Robot 2023; 19:e2464. [PMID: 36181262 DOI: 10.1002/rcs.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Image registration is a crucial technology in robot-assisted knee arthroplasty, which provides real-time patient information by registering the pre-operative image data with data acquired during the operation. The existing registration method requires surgeons to manually pick up medical feature points (i.e. anatomical points) in pre-operative images, which is time-consuming and relied on surgeons experience. Moreover, different doctors have different preferences in preoperative planning, which may influence the consistency of surgical results. METHODS A medical feature points automatic extraction method based on PointNet++ named Point_RegNet is proposed to improve the efficiency of preoperative preparation and ensure the consistency of surgical results. The proposed method replaces the classification and segmentation layer of PointNet++ with a regression layer to predict the position of feature points. The comparative experiment is adopted to determine the optimal set of abstraction layers in PointNet++. RESULTS The proposed network with three set abstraction layers is more suitable for extracting feature points. The feature points predictions mean error of our method is less than 5 mm, which is 1 mm less than the manual marking method. Ultimately, our method only requires less than 3 s to extract all medical feature points in practical application. It is much faster than the manual extraction way which usually requires more than half an hour to mark all necessary feature points. CONCLUSION Our deep learning-based method can improve the surgery accuracy and reduce the preoperative preparation time. Moreover, this method can also be applied to other surgical navigation systems.
Collapse
Affiliation(s)
- Weiya Wang
- School of Electrical Engineering & Automation, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Haifeng Zhou
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Yuxin Yan
- Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xiao Cheng
- Applied Technology College of Soochow University, Suzhou, China
| | - Peng Yang
- First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liangzhi Gan
- School of Electrical Engineering & Automation, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shaolong Kuang
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China.,College of Health Science and Environment Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Kuiper RJA, Sakkers RJB, van Stralen M, Arbabi V, Viergever MA, Weinans H, Seevinck PR. Efficient cascaded V-net optimization for lower extremity CT segmentation validated using bone morphology assessment. J Orthop Res 2022; 40:2894-2907. [PMID: 35239226 PMCID: PMC9790725 DOI: 10.1002/jor.25314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Semantic segmentation of bone from lower extremity computerized tomography (CT) scans can improve and accelerate the visualization, diagnosis, and surgical planning in orthopaedics. However, the large field of view of these scans makes automatic segmentation using deep learning based methods challenging, slow and graphical processing unit (GPU) memory intensive. We investigated methods to more efficiently represent anatomical context for accurate and fast segmentation and compared these with state-of-the-art methodology. Six lower extremity bones from patients of two different datasets were manually segmented from CT scans, and used to train and optimize a cascaded deep learning approach. We varied the number of resolution levels, receptive fields, patch sizes, and number of V-net blocks. The best performing network used a multi-stage, cascaded V-net approach with 1283 -643 -323 voxel patches as input. The average Dice coefficient over all bones was 0.98 ± 0.01, the mean surface distance was 0.26 ± 0.12 mm and the 95th percentile Hausdorff distance 0.65 ± 0.28 mm. This was a significant improvement over the results of the state-of-the-art nnU-net, with only approximately 1/12th of training time, 1/3th of inference time and 1/4th of GPU memory required. Comparison of the morphometric measurements performed on automatic and manual segmentations showed good correlation (Intraclass Correlation Coefficient [ICC] >0.8) for the alpha angle and excellent correlation (ICC >0.95) for the hip-knee-ankle angle, femoral inclination, femoral version, acetabular version, Lateral Centre-Edge angle, acetabular coverage. The segmentations were generally of sufficient quality for the tested clinical applications and were performed accurately and quickly compared to state-of-the-art methodology from the literature.
Collapse
Affiliation(s)
- Ruurd J. A. Kuiper
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands,Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ralph J. B. Sakkers
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marijn van Stralen
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands,MRIguidance B.V.UtrechtThe Netherlands
| | - Vahid Arbabi
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands,Department of Mechanical EngineeringUniversity of BirjandBirjandIran
| | - Max A. Viergever
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Harrie Weinans
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter R. Seevinck
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands,MRIguidance B.V.UtrechtThe Netherlands
| |
Collapse
|
14
|
Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR. A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs. J Anat 2022; 241:101-118. [PMID: 35118654 PMCID: PMC9178381 DOI: 10.1111/joa.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three‐dimensional (3‐D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3‐D pose (joint or limb configuration) and 3‐D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3‐D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.
Collapse
Affiliation(s)
- Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Armita R Manafzadeh
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Peter J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Morgan L Turner
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert E Kambic
- Department of Biology, Hood College, Frederick, Maryland, USA
| | - Andrew R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Human Anatomy Resource Centre, University of Liverpool, Liverpool, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
15
|
Dunning H, van de Groes S, Verdonschot N, Buckens C, Janssen D. The sensitivity of an anatomical coordinate system to anatomical variation and its effect on the description of knee kinematics as obtained from dynamic CT imaging. Med Eng Phys 2022; 102:103781. [DOI: 10.1016/j.medengphy.2022.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 01/18/2022] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
|
16
|
Articulation of the femoral condyle during knee flexion. J Biomech 2022; 131:110906. [PMID: 34923296 PMCID: PMC8760888 DOI: 10.1016/j.jbiomech.2021.110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Femoral condyle motion of the knee is generally reported using a morphological trans-epicondyle axis (TEA) or geometric center axis (GCA) in the investigation of the knee kinematics. Axial rotation of the femur is recognized as a characteristic motion of the knee during flexion, but is controversial in the literature. This study investigated the biomechanical factors that could be associated to the axial rotations of the femur using both physiological and morphological measurement methods. Twenty healthy knees were investigated during a weightbearing flexion from 0° to 120° at a 15° increment using an imaging technique. A 3D model was constructed for each knee using MR images. Tibiofemoral cartilage contact points were determined at each flexion position to represent physiological knee motion. The contact distance on each condyle was measured between consecutive contact points. The TEA and GCA were used to measure morphological anteroposterior translations of the femoral condyles. The differences between the medial and lateral condyle motions were used to calculate the physiological and morphological axial rotations of the femur. Both the physiological and morphological methods measured external rotations of the femur at low flexion range (0°-45°) and minimal rotations at higher flexion angles. However, the morphological method measured larger posterior translations of the lateral femoral condyle than the medial condyle (p < 0.05), implying a medial pivoting rotation; in contrast, the physiological method measured larger contact distances on the medial condyle than on the lateral condyle (p < 0.05), implying a lateral pivoting rotation. These data could provide useful references for future investigation of kinematics of the knee before and after surgical repair, such as using total knee arthroplasty.
Collapse
|
17
|
Chiba D, Gale T, Nishida K, Suntaxi F, Lesniak BP, Fu FH, Anderst W, Musahl V. Lateral Extra-articular Tenodesis Contributes Little to Change In Vivo Kinematics After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Am J Sports Med 2021; 49:1803-1812. [PMID: 33872056 DOI: 10.1177/03635465211003298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Lateral extra-articular tenodesis (LET) in combination with anterior cruciate ligament (ACL) reconstruction (ACLR) has been proposed to improve residual rotatory knee instability in patients having ACL deficiency. PURPOSE/HYPOTHESIS The purpose was to compare the effects of isolated ACLR (iACLR) versus LET in combination with ACLR (ACLR+LET) on in vivo kinematics during downhill running. It was hypothesized that ACLR+LET would reduce the internal rotation of the reconstructed knee in comparison with iACLR. STUDY DESIGN Controlled laboratory study. METHODS A total of 18 patients with ACL deficiency were included. All participants were randomly assigned to receive ACLR+ LET or iACLR during surgery. Six months and 12 months after surgery, knee joint motion during downhill running was measured using dynamic biplane radiography and a validated registration process that matched patient-specific 3-dimensional bone models to synchronized biplane radiographs. Anterior tibial translation (ATT; positive value means "anterior translation") and tibial rotation (TR) relative to the femur were calculated for both knees. The side-to-side differences (SSDs) in kinematics were also calculated (operated knee-contralateral healthy knee). The SSD value was compared between ACLR+LET and iACLR groups using a Mann-Whitney U test. RESULTS At 6 months after surgery, the SSD of ATT in patients who had undergone ACLR+LET (-1.9 ± 2.0 mm) was significantly greater than that in patients who had undergone iACLR (0.9 ± 2.3 mm) at 0% of the gait cycle (foot strike) (P = .031). There was no difference in ATT 12 months after surgery. Regarding TR, there were no differences between ACLR+LET and iACLR at either 6 months (P value range, .161-.605) or 12 months (P value range, .083-.279) after surgery. CONCLUSION LET in combination with ACLR significantly reduced ATT at the instant of foot strike during downhill running at 6 months after surgery. However, this effect was not significant at 12 months after surgery. The addition of LET to ACLR had no effect on TR at both 6 and 12 months after surgery. CLINICAL RELEVANCE LET in combination with ACLR may stabilize sagittal knee motion during downhill running in the early postoperation phase, but according to this study, it has no effect on 12-month in vivo kinematics. REGISTRATION NCT02913404 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Daisuke Chiba
- UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tom Gale
- Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyohei Nishida
- UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Felipe Suntaxi
- Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryson P Lesniak
- UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Freddie H Fu
- UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Anderst
- Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Volker Musahl
- UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Zhou C, Zhang Z, Rao Z, Foster T, Bedair H, Li G. Physiological articular contact kinematics and morphological femoral condyle translations of the tibiofemoral joint. J Biomech 2021; 123:110536. [PMID: 34023755 DOI: 10.1016/j.jbiomech.2021.110536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The changes of tibiofemoral articular cartilage contact locations during knee activities represent a physiological functional characteristic of the knee. However, most studies reported relative motions of the tibia and femur using morphological flexion axes. Few data have been reported on comparisons of morphological femoral condyle motions and physiological tibiofemoral cartilage contact location changes. This study compared the morphological and physiological kinematic measures of 20 knees during an in vivo weightbearing single leg lunge from full extension to 120° of flexion using a combined MRI and dual fluoroscopic imaging system (DFIS) technique. The morphological femoral condyle motion was measured using three flexion axes: trans-epicondylar axis (TEA), geometric center axis (GCA) and iso-height axis (IHA). At low flexion angles, the medial femoral condyle moved anteriorly, opposite to that of the contact points, and was accompanied with a sharp increase in external femoral condyle rotation. At 120° of flexion, the morphological measures of the lateral femoral condyle were more posteriorly positioned than those of the contact locations. The data showed that the morphological measures of femoral condyle translations and axial rotations varied with different flexion axes and did not represent the physiological articular contact kinematics. Biomechanical evaluations of the knee joint motion should include both morphological and physiological kinematics data to accurately demonstrate the functionality of the knee.
Collapse
Affiliation(s)
- Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Newton, MA, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhenming Zhang
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Newton, MA, USA; Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhitao Rao
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Newton, MA, USA
| | - Timothy Foster
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Newton, MA, USA; Department of Orthopedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA
| | - Hany Bedair
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Newton, MA, USA; Department of Orthopedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Newton, MA, USA; Department of Orthopedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.
| |
Collapse
|
19
|
Carrara C, Belvedere C, Caravaggi P, Durante S, Leardini A. Techniques for 3D foot bone orientation angles in weight-bearing from cone-beam computed tomography. Foot Ankle Surg 2021; 27:168-174. [PMID: 32370949 DOI: 10.1016/j.fas.2020.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND For the diagnosis and treatment of foot and ankle disorders, objective quantification of the absolute and relative orientation angles is necessary. The present work aims at assessing novel techniques for 3D measures of foot bone angles from current Cone-Beam technology. METHODS A normal foot was scanned via weight-bearing CT and 3D-model of each bone was obtained. Principal Component Analysis, landmark-based and mid-diaphyseal axes were exploited to obtain bone anatomical references. Absolute and relative angles between calcaneus and first metatarsal bone were calculated both in 3D and in a simulated sagittal projections. The effects of malpositioning were also investigated via rotations of the entire foot model. RESULTS Large angle variations were found between the different definitions. For the 3D relative orientation, variations larger than 10 degrees were found. Foot malposition in axial rotation or in varus/valgus can result in errors larger than 5 and 3 degrees, respectively. CONCLUSIONS New measures of foot bone orientation are possible in 3D and in weight-bearing, removing operator variability and the effects of foot positioning.
Collapse
Affiliation(s)
- Claudio Carrara
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Claudio Belvedere
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Caravaggi
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Durante
- Nursing, Technical and Rehabilitation Assistance Service, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
20
|
Zhang RY, Zhao YP, Su XY, Li JT, Zhao JX, Zhang LC, Tang PF. The Oval-like Cross-section of Femoral Neck Isthmus in Three-dimensional Morphological Analysis. Orthop Surg 2021; 13:321-327. [PMID: 33417311 PMCID: PMC7862155 DOI: 10.1111/os.12914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/27/2022] Open
Abstract
Objectives To investigate the cross‐section shape of the femoral neck isthmus (FNI) in three‐dimensional reconstruction model of the femoral neck. Methods From December 2009 to December 2012, computed tomography (CT) data of bilateral hip joint from 200 consecutive patients (137 males and 63 females, 69.41 ± 9.21 years old, ranged from 50–85 years old) who underwent surgical treatments for proximal femoral fracture were retrospectively reviewed. The 3D model of the proximal femur was reconstructed, and the “inertia axis” method, which was applied to measure the long and short axes of the cross‐section of the FNI, was established. The cross‐sectional area and perimeter were calculated by a formula using the length of the long and short axes and then compared with the actual measured values by the software. Correlation between the descriptive parameters of the FNI cross‐section (area, perimeter, and eccentricity) and patients' demographics (age, height, and weight) was analyzed. Stepwise linear regression analysis was used to determine the main relevant factors. Results The ICC results showed excellent data reproducibility ranged from 0.989 to 0.996. There was no significant difference in the cross‐sectional area of the FNI between the actual measured values and the predicted values using the formula (732.83 ± 126.74 mm2vs 731.62 ± 128.15 mm2, P = 0.322). The perimeter using the two methods showed narrow while significant difference (97.86 ± 8.60 mm vs 92.84 ± 8.65 mm, P < 0.001), the actual measured values were about 5 mm greater than the predicted values. The parameters (area, perimeter, and eccentricity) were significantly larger in male than female (P < 0.001). A positive correlation between the cross‐sectional area, perimeter, height, and weight was observed. The stepwise linear regression analysis showed that the regression equation of the FNI area was as follows: Y = −1083.75 + 1033.86 × HEIGHT + 1.92 × WEIGHT, R2 = 0.489. Conclusion The cross‐section shape of the FNI appears to be oval‐like in the 3D model, which is separated according to the inertia axis, and the findings proposed an anatomical basis for the further study of the spatial configuration of cannulated screws in the treatment of femoral neck fractures.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- Department of Orthopaedics, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yan-Peng Zhao
- Department of Orthopaedics, Chinese PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiu-Yun Su
- Department of Orthopaedics, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jian-Tao Li
- Department of Orthopaedics, Chinese PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | | | - Li-Cheng Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pei-Fu Tang
- Medical School of Chinese PLA, Beijing, China.,Department of Orthopaedics, Chinese PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
21
|
Automatic generation of personalised skeletal models of the lower limb from three-dimensional bone geometries. J Biomech 2020; 116:110186. [PMID: 33515872 DOI: 10.1016/j.jbiomech.2020.110186] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
The generation of personalised and patient-specific musculoskeletal models is currently a cumbersome and time-consuming task that normally requires several processing hours and trained operators. We believe that this aspect discourages the use of computational models even when appropriate data are available and personalised biomechanical analysis would be beneficial. In this paper we present a computational tool that enables the fully automatic generation of skeletal models of the lower limb from three-dimensional bone geometries, normally obtained by segmentation of medical images. This tool was evaluated against four manually created lower limb models finding remarkable agreement in the computed joint parameters, well within human operator repeatability. The coordinate systems origins were identified with maximum differences between 0.5 mm (hip joint) and 5.9 mm (subtalar joint), while the joint axes presented discrepancies between 1° (knee joint) to 11° (subtalar joint). To prove the robustness of the methodology, the models were built from four datasets including both genders, anatomies ranging from juvenile to elderly and bone geometries reconstructed from high-quality computed tomography as well as lower-quality magnetic resonance imaging scans. The entire workflow, implemented in MATLAB scripting language, executed in seconds and required no operator intervention, creating lower extremity models ready to use for kinematic and kinetic analysis or as baselines for more advanced musculoskeletal modelling approaches, of which we provide some practical examples. We auspicate that this technical advancement, together with upcoming progress in medical image segmentation techniques, will promote the use of personalised models in larger-scale studies than those hitherto undertaken.
Collapse
|
22
|
Gale T, Anderst W. Tibiofemoral helical axis of motion during the full gait cycle measured using biplane radiography. Med Eng Phys 2020; 86:65-70. [PMID: 33261735 DOI: 10.1016/j.medengphy.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
The helical axis of motion (HAM), which describes the simultaneous multiplanar translations and rotations that occur within a joint, has been proposed as a single measure to characterize dynamic joint function. The objective of this study was to determine the tibiofemoral HAM during 5 discrete phases of gait. Thirty-nine knees from 20 healthy adults were imaged using high-speed biplane radiography during treadmill walking. The primary outcome measures were the intersection of the HAM with the sagittal plane of the femur, and the direction of the HAM. The intersection point translated an average of 12.7 ± 5.5% of femur condyle depth in the anterior-posterior direction and 28.6 ± 13.3% of femur condyle height in the proximal-distal direction during gait. The anterior/posterior and proximal/distal components of the HAM vector were greater during stance (5.6°±3.8° and 11.1°±5.0°, respectively) than during swing (2.0°±1.1° and 6.4°±3.8°, respectively) (p<0.001) reflecting greater coupled rotations during stance. No significant side-to-side differences in intersection point location or HAM orientation were found during any of the 5 phases of gait (max difference 4.1 ± 3.4% of femur condyle depth and 13.1 ± 16.7% of femur condyle height; 12.7°±12.3° proximal/distal and 4.2°±4.5° anterior/posterior direction). Loading significantly affected HAM location and orientation (p<0.001). Knowledge of healthy knee HAM and typical side-to-side differences during gait can serve as a baseline for evaluating knee motion after clinical interventions.
Collapse
Affiliation(s)
- Tom Gale
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA 15203, USA.
| | - William Anderst
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA 15203, USA
| |
Collapse
|
23
|
Gale T, Anderst W. Knee Kinematics of Healthy Adults Measured Using Biplane Radiography. J Biomech Eng 2020; 142:101004. [PMID: 32491153 PMCID: PMC7477710 DOI: 10.1115/1.4047419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/27/2020] [Indexed: 11/08/2022]
Abstract
A dataset of knee kinematics in healthy, uninjured adults is needed to serve as a reference for comparison when evaluating the effects of injury, surgery, rehabilitation, and age. Most currently available datasets that characterize healthy knee kinematics were developed using conventional motion analysis, known to suffer from skin motion artifact. More accurate kinematics, obtained from bone pins or biplane radiography, have been reported for datasets ranging in size from 5 to 15 knees. The aim of this study was to characterize tibiofemoral kinematics and its variability in a larger sample of healthy adults. Thirty-nine knees were imaged using biplane radiography at 100 images/s during multiple trials of treadmill walking. Multiple gait trials were captured to measure stance and swing-phase knee kinematics. Six degrees-of-freedom kinematics were determined using a validated volumetric model-based tracking process. A bootstrapping technique was used to define average and 90% prediction bands for the kinematics. The average ROM during gait was 7.0 mm, 3.2 mm, and 2.9 mm in anterior/posterior (AP), medial/lateral (ML), and proximal/distal (PD) directions, and 67.3 deg, 11.5 deg, and 3.7 deg in flexion/extension (FE), internal/external (IE), and abduction/adduction (AbAd). Continuous kinematics demonstrated large interknee variability, with 90% prediction bands spanning approximately ±4 mm, ±10 mm, and ±5 mm for ML, AP, and PD translations and ±15 deg, ±10 deg, and ±6 deg in FE, IE, and AbAd. This dataset suggests substantial variability exists in healthy knee kinematics. This study provides a normative database for evaluating knee kinematics in patients who receive conservative or surgical treatment.
Collapse
Affiliation(s)
- Tom Gale
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA 15203
| | - William Anderst
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA 15203
| |
Collapse
|
24
|
Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities. J Biomech 2020; 103:109696. [PMID: 32139098 DOI: 10.1016/j.jbiomech.2020.109696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.
Collapse
|