1
|
Yu P, Xiong J, Tong Z, Chen L, Hu L, Liu J, Liu J. Hemodynamic-based virtual surgery design of double-patch repair for pulmonary arterioplasty in tetralogy of Fallot. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108012. [PMID: 38246096 DOI: 10.1016/j.cmpb.2024.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Surgical correction of pulmonary artery stenosis (PAS) is essential to the prognosis of patients with tetralogy of Fallot (TOF). The double-patch method of pulmonary arterioplasty is usually applied in case of multiple stenosis in TOF patients' pulmonary artery (PA) and when PAS cannot be relieved by the single-patch method. The surgical planning for the double-patch design remains challenging. The purpose of this study is to investigate the double-patch design with different angulations between the left pulmonary artery (LPA) and the right pulmonary artery (RPA), and to understand postoperative hemodynamic alterations by the application of computer-aided design (CAD) and computational fluid dynamics (CFD) techniques. METHODS The three-dimensional model of the PA was reconstructed based on preoperative computed tomography imaging data obtained from the patient with TOF. Three postoperative models with different designs of double-patch were created by "virtual surgery" using the CAD technique. Double-Patch 120 Model was created with double patches implanted in the main pulmonary artery (MPA) and the PA bifurcation and without changing the spatial position of PA. The angulation between the LPA and the RPA was defined as θ, which equaled to 120° in Pre-Operative Model and Double-Patch 120 Model. Based on Double-Patch 120 Model, Double-Patch 110 Model and Double-Patch 130 Model were generated with θ equaled to 110° and 130°, respectively. Combined with CFD, the differences of velocity streamlines, wall shear stress (WSS), flow distribution ratio (FDR), and energy loss (EL) were compared to analyze postoperative pulmonary flow characteristics. RESULTS The values of velocity and WSS decreased significantly after virtual surgery. Obvious vortices and swirling flows were observed downstream of the stenosis of RPA and LPA in Pre-Operative Model, while fewer vortices developed along the anterior wall of the expanded lumens of RPA, especially in Double-Patch 110 Model. With the relief of PAS, two relatively higher WSS regions were observed at the posterior walls of RPA and LPA. The maximum WSS values in these regions of Double-Patch 110 Model were lower than those in Double-Patch 120 Model and Double-Patch 130 Model. Furthermore, the FDRs were elevated and the ELs were greatly reduced. It was found that Double-Patch 110 Model with the angulation between the LPA and the RPA equaled to 110° showed relatively better properties of hemodynamics than other models. CONCLUSIONS The angulation between the LPA and the RPA is an important factor that should be integrated in the double-patch design for TOF repair. Virtual surgery based on patient-specific vascular model and computational hemodynamics can be used to provide assistance for individualized surgical planning of double-patch arterioplasty.
Collapse
Affiliation(s)
- Pingping Yu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiwen Xiong
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhirong Tong
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lijun Chen
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liwei Hu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinfen Liu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinlong Liu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
2
|
D'Souza GA, Rinaldi JE, Meki M, Crusan A, Richardson E, Shinnar M, Herbertson LH. Using a Mock Circulatory Loop as a Regulatory Science Tool to Simulate Different Heart Failure Conditions. J Biomech Eng 2024; 146:011004. [PMID: 37831143 DOI: 10.1115/1.4063746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Mechanical circulatory support (MCS) device therapy is one of the primary treatment options for end-stage heart failure (HF), whereby a mechanical pump is integrated with the failing heart to maintain adequate tissue perfusion. The ISO 14708-5:2020 standard prescribes generic guidelines for nonclinical device evaluation and system performance testing of MCS devices using a mock circulatory loop (MCL). However, the utility of MCLs in premarket regulatory submissions of MCS devices is ambiguous, and the specific disease states that the device is intended to treat are not usually simulated. Hence, we aim to outline the potential of MCLs as a valuable regulatory science tool for characterizing MCS device systems by adequately representing target clinical-use HF conditions on the bench. Target pathophysiologic hemodynamics of HF conditions (i.e., cardiogenic shock (CS), left ventricular (LV) hypertrophy secondary to hypertension, and coronary artery disease), along with a healthy adult at rest and a healthy adult during exercise are provided as recommended test conditions. The conditions are characterized based on LV, aorta, and left atrium pressures using recommended cardiac hemodynamic indices such as systolic, diastolic, and mean arterial pressure, mean cardiac output (CO), cardiac cycle time, and systemic vascular resistance. This study is a first step toward standardizing MCLs to generate well-defined target HF conditions used to evaluate MCS devices.
Collapse
Affiliation(s)
- Gavin A D'Souza
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Jean E Rinaldi
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Moustafa Meki
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Annabelle Crusan
- Circulatory Support Devices Team, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Eric Richardson
- Circulatory Support Devices Team, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Meir Shinnar
- Circulatory Support Devices Team, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Luke H Herbertson
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| |
Collapse
|
3
|
Boumpouli M, Sauvage EL, Capelli C, Schievano S, Kazakidi A. Characterization of Flow Dynamics in the Pulmonary Bifurcation of Patients With Repaired Tetralogy of Fallot: A Computational Approach. Front Cardiovasc Med 2021; 8:703717. [PMID: 34660711 PMCID: PMC8514754 DOI: 10.3389/fcvm.2021.703717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
The hemodynamic environment of the pulmonary bifurcation is of great importance for adult patients with repaired tetralogy of Fallot (rTOF) due to possible complications in the pulmonary valve and narrowing of the left pulmonary artery (LPA). The aim of this study was to computationally investigate the effect of geometrical variability and flow split on blood flow characteristics in the pulmonary trunk of patient-specific models. Data from a cohort of seven patients was used retrospectively and the pulmonary hemodynamics was investigated using averaged and MRI-derived patient-specific boundary conditions on the individualized models, as well as a statistical mean geometry. Geometrical analysis showed that curvature and tortuosity are higher in the LPA branch, compared to the right pulmonary artery (RPA), resulting in complex flow patterns in the LPA. The computational analysis also demonstrated high time-averaged wall shear stress (TAWSS) at the outer wall of the LPA and the wall of the RPA proximal to the junction. Similar TAWSS patterns were observed for averaged boundary conditions, except for a significantly modified flow split assigned at the outlets. Overall, this study enhances our understanding about the flow development in the pulmonary bifurcation of rTOF patients and associates some morphological characteristics with hemodynamic parameters, highlighting the importance of patient-specificity in the models. To confirm these findings, further studies are required with a bigger cohort of patients.
Collapse
Affiliation(s)
- Maria Boumpouli
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Emilie L. Sauvage
- Institute of Cardiovascular Science and Great Ormond Street Hospital for Children, NHS Foundation Trust, University College London, London, United Kingdom
| | - Claudio Capelli
- Institute of Cardiovascular Science and Great Ormond Street Hospital for Children, NHS Foundation Trust, University College London, London, United Kingdom
| | - Silvia Schievano
- Institute of Cardiovascular Science and Great Ormond Street Hospital for Children, NHS Foundation Trust, University College London, London, United Kingdom
| | - Asimina Kazakidi
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
4
|
Packy A, D'Souza GA, Farahmand M, Herbertson L, Scully CG. Simulating Radial Pressure Waveforms with a Mock Circulatory Flow Loop to Characterize Hemodynamic Monitoring Systems. Cardiovasc Eng Technol 2021; 13:279-290. [PMID: 34472042 DOI: 10.1007/s13239-021-00575-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Mock circulatory loops (MCLs) can reproducibly generate physiologically relevant pressures and flows for cardiovascular device testing. These systems have been extensively used to characterize the performance of therapeutic cardiac devices, but historically MCLs have had limited use for assessing patient monitoring systems. Here, we adapted an MCL to include peripheral components and evaluated its utility for qualitative and quantitative benchtop testing of hemodynamic monitoring devices. METHODS An MCL was designed to simulate three physiological hemodynamic states: normovolemia, cardiogenic shock, and hyperdynamic circulation. The system was assessed for stability in pressure and flow values over time, repeatability, waveform morphology, and systemic-peripheral pressure relationships. RESULTS For each condition, cardiac output was controlled to the nearest 0.2 L/min, and flow rate and mean arterial pressure remained stable and repeatable over a 60-s period (n = 5, standard deviation of ± 0.1 L/min and ± 0.84 mmHg, respectively). Transfer function analyses showed that the systemic-peripheral relationships could be adequately manipulated. The results from this MCL were comparable to those from other published MCLs and computational simulations. However, resolving current limitations of the system would further improve its utility. Three pulse contour analysis algorithms were applied to the pressure and flow data from the MCL to demonstrate the potential role of MCLs in characterizing hemodynamic monitoring systems. CONCLUSION Overall, the development of robust analysis methods in conjunction with modified MCLs can expand device testing applications to hemodynamic monitoring systems. Properly validated MCLs can create a stable and reproducible environment for testing patient monitoring systems over their entire operating ranges prior to clinical use.
Collapse
Affiliation(s)
- Anna Packy
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, MD, USA
- University of Maryland, College Park, MD, USA
| | - Gavin A D'Souza
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Masoud Farahmand
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Luke Herbertson
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher G Scully
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Bldg. 62 Rm 1129, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.
| |
Collapse
|
5
|
3D Simulation Analysis of Central Shunt in Patient-Specific Hemodynamics: Effects of Varying Degree of Pulmonary Artery Stenosis and Shunt Diameters. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:4720908. [PMID: 32148557 PMCID: PMC7042498 DOI: 10.1155/2020/4720908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
The objective of this study was to compare the effects of different shunt diameters and pulmonary artery (PA) stenosis grades on the hemodynamics of central shunts to determine an optimal surgical plan and improve the long-term outcomes of the operation. A 3D anatomical model was reconstructed based on the patient's clinical CT data. 3D computational fluid dynamics models were built with varying degrees of stenosis (the stenosis ratio α was represented by the ratio of blood flow through the main pulmonary artery to cardiac output, ranging from 0 to 30%; the smaller the value of α, the more severe the pulmonary artery stenosis) and varying shunt diameters (3, 3.5, 4, 4.5, and 5 mm). Our results show that the asymmetry of pulmonary artery flow increased with increasing shunt diameter and α, which will be more conducive to the development of the left pulmonary artery. Additionally, the pulmonary-to-systemic flow ratio (QP/QS) increases with the shunt diameter and α, and all the values exceed 1. When the shunt diameter is 3 mm and α = 0%, QP/QS reaches the minimum value of 1.01, and the oxygen delivery reaches the maximum value of 205.19 ml/min. However, increasing shunt diameter and α is beneficial to reduced power loss and smoother PA flow. In short, for patients with severe PA stenosis (α is small), a larger-diameter shunt may be preferred. Conversely, when the degree of PA stenosis is moderate, a smaller shunt diameter can be considered.
Collapse
|
6
|
Wang L, Liu J, Zhong Y, Zhang M, Xiong J, Shen J, Tong Z, Xu Z. Medical Image-Based Hemodynamic Analyses in a Study of the Pulmonary Artery in Children With Pulmonary Hypertension Related to Congenital Heart Disease. Front Pediatr 2020; 8:521936. [PMID: 33344379 PMCID: PMC7738347 DOI: 10.3389/fped.2020.521936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: Pulmonary hypertension related to congenital heart disease (PH-CHD) is a devastating disease caused by hemodynamic disorders. Previous hemodynamic research in PH-CHD mainly focused on wall shear stress (WSS). However, energy loss (EL) is a vital parameter in evaluation of hemodynamic status. We investigated if EL of the pulmonary artery (PA) is a potential biomechanical marker for comprehensive assessment of PH-CHD. Materials and Methods: Ten PH-CHD patients and 10 age-matched controls were enrolled. Subject-specific 3-D PA models were reconstructed based on computed tomography. Transient flow, WSS, and EL in the PA were calculated using non-invasive computational fluid dynamics. The relationship between body surface area (BSA)-normalized EL ( E . ) and PA morphology and PA flow were analyzed. Results: Morphologic analysis indicated that the BSA-normalized main PA (MPA) diameter (DMPAnorm), MPA/aorta diameter ratio (DMPA/DAO), and MPA/(left PA + right PA) [DMPA/D(LPA+RPA)] diameter ratio were significantly larger in PH-CHD patients. Hemodynamic results showed that the velocity of the PA branches was higher in PH-CHD patients, in whom PA flow rate usually increased. WSS in the MPA was lower and E . was higher in PH-CHD patients. E . was positively correlated with DMPAnorm, DMPA/DAO, and DMPA/D(LPA+RPA) ratios and the flow rate in the PA. E . was a sensitive index for the diagnosis of PH-CHD. Conclusion: E . is a potential biomechanical marker for PH-CHD assessment. This hemodynamic parameter may lead to new directions for revealing the potential pathophysiologic mechanism of PH-CHD.
Collapse
Affiliation(s)
- Liping Wang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Liu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumin Zhong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwen Xiong
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanya Shen
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhirong Tong
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoming Xu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
D'Souza GA, Taylor MD, Banerjee RK. Methodology for Hemodynamic Assessment of a Three-Dimensional Printed Patient-Specific Vascular Test Device. J Med Device 2019. [DOI: 10.1115/1.4043992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Assessing hemodynamics in vasculature is important for the development of cardiovascular diagnostic parameters and evaluation of medical devices. Benchtop experiments are a safe and comprehensive preclinical method for testing new diagnostic endpoints and devices within a controlled environment. Recent advances in three-dimensional (3D) printing have enhanced benchtop tests by allowing generation of patient-specific and pathophysiologic conditions. We used 3D printing, coupled with image processing and computer-aided design (CAD), to develop a patient-specific vascular test device from clinical data. The proximal pulmonary artery (PA) tree including the main, left, and right pulmonary arteries, with a stenosis within the left PA was selected as a representative anatomy for developing the vascular test device. Three test devices representing clinically relevant stenosis severities, 90%, 80%, and 70% area stenosis, were evaluated at different cardiac outputs (COs). A mock circulatory loop (MCL) generating pathophysiologic pulmonary pressure and flow was used to evaluate the hemodynamics within the devices. The dimensionless pressure drop–velocity ratio characteristic curves for the three stenosis severities were obtained. At a fixed CO, the dimensionless pressure drop increased nonlinearly with an increase in (a) the velocity ratio for a fixed stenosis severity and (b) the stenosis severity at a specific velocity ratio. The dimensionless pressure drop observed in vivo was similar (within 1%) to that measured in moderate area stenosis of 70% because both flows were viscous dominated. The hemodynamics of the 3D printed test device can be used for evaluating diagnostic endpoints and medical devices in a preclinical setting under realistic conditions.
Collapse
Affiliation(s)
- Gavin A. D'Souza
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Michael D. Taylor
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rupak K. Banerjee
- Department of Mechanical and Materials Engineering, University of Cincinnati, 593 Rhodes Hall, Cincinnati, OH 45221 e-mail:
| |
Collapse
|