1
|
Ogilvie KM, Mah AML, Klar K, Anthony A, Davidge KM, Clarke HM, Ho ES. Prevalence and predictors of elbow flexion contractures during early childhood following brachial plexus birth injury. J Hand Ther 2024; 37:446-452. [PMID: 38342639 DOI: 10.1016/j.jht.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/10/2023] [Accepted: 09/16/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Elbow flexion contracture development in school-age children with a brachial plexus birth injury (BPBI) is common. Reports indicate onset between 2 and 4 years; however, little is known about early childhood prevalence, development, and trajectory of these contractures. PURPOSE To determine the prevalence and predictors of BPBI elbow flexion contractures during early childhood. STUDY DESIGN A retrospective cross-sectional study. METHODS Demographic, diagnostic, treatment, and elbow contracture data were collected for children with a BPBI <4 years between 2015 and 2019 from a prospectively collected database. Spinal root motor contributions and injury were determined using Active Movement Scale (AMS) scores at 6 weeks of age and used to predict contracture development. RESULTS Of the 171 children that met inclusion criteria, 87% (n = 149) had upper plexus injuries. The mean age at the time of evaluation for an elbow contracture was 21.4 ± 12.7 months. The prevalence of elbow flexion contractures was 22% (n = 38), with mean onset at 13.4 ± 11.0 months. Mean contracture degree was -10.8 ± -6.9 degrees with 76% (n = 29) <-10 degrees. AMS shoulder abduction, flexion, and external rotation; elbow flexion; forearm supination; and wrist extension scores at a mean 2.3 ± 1.4 months were significantly lower in children who developed elbow flexion contractures (p < 0.001). Logistic regression found that low AMS elbow flexion with high elbow extension scores were a significant (p < 0.003) predictor of elbow contracture development. CONCLUSIONS The prevalence of elbow flexion contractures in early childhood is greater than previously understood. These findings indicate that C5-C6 injury affecting elbow flexion with relative preservation of elbow extension is a predictor of contracture development. Further research is needed to investigate the nature and sequelae of C5-C6 injury and its effects on elbow flexion contracture development.
Collapse
Affiliation(s)
- Karen M Ogilvie
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada; Alberta Health Services, Calgary, Canada
| | - Allison M L Mah
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada; Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Karen Klar
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Alison Anthony
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Kristen M Davidge
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Howard M Clarke
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada
| | - Emily S Ho
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada; Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
2
|
Godivier J, Lawrence EA, Wang M, Hammond CL, Nowlan NC. Compressive stress gradients direct mechanoregulation of anisotropic growth in the zebrafish jaw joint. PLoS Comput Biol 2024; 20:e1010940. [PMID: 38330044 PMCID: PMC10880962 DOI: 10.1371/journal.pcbi.1010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mechanical stimuli arising from fetal movements are critical factors underlying joint growth. Abnormal fetal movements negatively affect joint shape features with important implications for joint health, but the mechanisms by which mechanical forces from fetal movements influence joint growth are still unclear. In this research, we quantify zebrafish jaw joint growth in 3D in free-to-move and immobilised fish larvae between four and five days post fertilisation. We found that the main changes in size and shape in normally moving fish were in the ventrodorsal axis, while growth anisotropy was lost in the immobilised larvae. We next sought to determine the cell level activities underlying mechanoregulated growth anisotropy by tracking individual cells in the presence or absence of jaw movements, finding that the most dramatic changes in growth rates due to jaw immobility were in the ventrodorsal axis. Finally, we implemented mechanobiological simulations of joint growth with which we tested hypotheses relating specific mechanical stimuli to mechanoregulated growth anisotropy. Different types of mechanical stimulation were incorporated into the simulation to provide the mechanoregulated component of growth, in addition to the baseline (non-mechanoregulated) growth which occurs in the immobilised animals. We found that when average tissue stress over the opening and closing cycle of the joint was used as the stimulus for mechanoregulated growth, joint morphogenesis was not accurately predicted. Predictions were improved when using the stress gradients along the rudiment axes (i.e., the variation in magnitude of compression to magnitude of tension between local regions). However, the most accurate predictions were obtained when using the compressive stress gradients (i.e., the variation in compressive stress magnitude) along the rudiment axes. We conclude therefore that the dominant biophysical stimulus contributing to growth anisotropy during early joint development is the gradient of compressive stress experienced along the growth axes under cyclical loading.
Collapse
Affiliation(s)
- Josepha Godivier
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Elizabeth A. Lawrence
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Mengdi Wang
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Mattar LT, Mahboobin AB, Popchak AJ, Anderst WJ, Musahl V, Irrgang JJ, Debski RE. Individuals with rotator cuff tears unsuccessfully treated with exercise therapy have less inferiorly oriented net muscle forces during scapular plane abduction. J Biomech 2024; 162:111859. [PMID: 37989027 PMCID: PMC10843663 DOI: 10.1016/j.jbiomech.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Exercise therapy for individuals with rotator cuff tears fails in approximately 25.0 % of cases. One reason for failure of exercise therapy may be the inability to strengthen and balance the muscle forces crossing the glenohumeral joint that act to center the humeral head on the glenoid. The objective of the current study was to compare the magnitude and orientation of the net muscle force pre- and post-exercise therapy between subjects successfully and unsuccessfully (e.g. eventually underwent surgery) treated with a 12-week individualized exercise therapy program. Twelve computational musculoskeletal models (n = 6 successful, n = 6 unsuccessful) were developed in OpenSim (v4.0) that incorporated subject specific tear characteristics, muscle peak isometric force, in-vivo kinematics and bony morphology. The models were driven with experimental kinematics and the magnitude and orientation of the net muscle force was determined during scapular plane abduction at pre- and post-exercise therapy timepoints. Subjects unsuccessfully treated had less inferiorly oriented net muscle forces pre- and post-exercise therapy compared to subjects successfully treated (p = 0.039 & 0.045, respectively). No differences were observed in the magnitude of the net muscle force (p > 0.05). The current study developed novel computational musculoskeletal models with subject specific inputs capable of distinguishing between subjects successfully and unsuccessfully treated with exercise therapy. A less inferiorly oriented net muscle force in subjects unsuccessfully treated may increase the risk of superior migration leading to impingement. Adjustments to exercise therapy programs may be warranted to avoid surgery in subjects at risk of unsuccessful treatment.
Collapse
Affiliation(s)
- Luke T Mattar
- Orthopaedic Robotics Laboratory, University of Pittsburgh, United States; UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, United States
| | - Arash B Mahboobin
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, United States
| | - Adam J Popchak
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, United States
| | - William J Anderst
- Biodynamics Laboratory, University of Pittsburgh, United States; UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, United States
| | - Volker Musahl
- Orthopaedic Robotics Laboratory, University of Pittsburgh, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, United States; UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, United States
| | - James J Irrgang
- UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, United States; Department of Physical Therapy, University of Pittsburgh, Pittsburgh, United States
| | - Richard E Debski
- Orthopaedic Robotics Laboratory, University of Pittsburgh, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, United States; UPMC Freddie Fu Sports Medicine Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, United States.
| |
Collapse
|
4
|
Jadelis CT, Ellis BJ, Kamper DG, Saul KR. Cosimulation of the index finger extensor apparatus with finite element and musculoskeletal models. J Biomech 2023; 157:111725. [PMID: 37459752 PMCID: PMC10528231 DOI: 10.1016/j.jbiomech.2023.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
Musculoskeletal modeling has been effective for simulating dexterity and exploring the consequences of disability. While previous approaches have examined motor function using multibody dynamics, existing musculoskeletal models of the hand and fingers have difficulty simulating soft tissue such as the extensor mechanism of the fingers, which remains underexplored. To investigate the extensor mechanism and its impact on finger motor function, we developed a finite element model of the index finger extensor mechanism and a cosimulation method that combines the finite element model with a multibody dynamic model. The finite element model and cosimulation were validated through comparison with experimentally derived tissue strains and fingertip endpoint forces respectively. Tissue strains predicted by the finite element model were consistent with the experimentally observed strains of the 9 postures tested in cadaver specimens. Fingertip endpoint forces predicted using the cosimulation were well aligned in both force (difference within 0.60 N) and direction (difference within 30°with experimental results. Sensitivity of the extensor mechanism to changes in modulus and adhesion configuration were evaluated for ± 50% of experimental moduli, presence of the radial and ulnar adhesions, and joint capsule. Simulated strains and endpoint forces were found to be minimally sensitive to alterations in moduli and adhesions. These results are promising and demonstrate the ability of the cosimulation to predict global behavior of the extensor mechanism, while enabling measurement of stresses and strains within the structure itself. This model could be used in the future to predict the outcomes for different surgical repairs of the extensor mechanism.
Collapse
Affiliation(s)
| | - Benjamin J Ellis
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Derek G Kamper
- North Carolina State University, Raleigh, NC, United States; University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
5
|
Godivier J, Lawrence EA, Wang M, Hammond CL, Nowlan NC. Growth orientations, rather than heterogeneous growth rates, dominate jaw joint morphogenesis in the larval zebrafish. J Anat 2022; 241:358-371. [PMID: 35510779 PMCID: PMC9296026 DOI: 10.1111/joa.13680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
In early limb embryogenesis, synovial joints acquire specific shapes which determine joint motion and function. The process by which the opposing cartilaginous joint surfaces are moulded into reciprocal and interlocking shapes, called joint morphogenesis, is one of the least understood aspects of joint formation and the cell-level dynamics underlying it are yet to be unravelled. In this research, we quantified key cellular dynamics involved in growth and morphogenesis of the zebrafish jaw joint and synthesised them in a predictive computational simulation of joint development. Cells in larval zebrafish jaw joints labelled with cartilage markers were tracked over a 48-h time window using confocal imaging. Changes in distance and angle between adjacent cell centroids resulting from cell rearrangement, volume expansion and extracellular matrix (ECM) deposition were measured and used to calculate the rate and direction of local tissue deformations. We observed spatially and temporally heterogeneous growth patterns with marked anisotropy over the developmental period assessed. There was notably elevated growth at the level of the retroarticular process of the Meckel's cartilage, a feature known to undergo pronounced shape changes during zebrafish development. Analysis of cell dynamics indicated a dominant role for cell volume expansion in growth, with minor influences from ECM volume increases and cell intercalation. Cell proliferation in the joint was minimal over the timeframe of interest. Synthesising the dynamic cell data into a finite element model of jaw joint development resulted in accurate shape predictions. Our biofidelic computational simulation demonstrated that zebrafish jaw joint growth can be reasonably approximated based on cell positional information over time, where cell positional information derives mainly from cell orientation and cell volume expansion. By modifying the input parameters of the simulation, we were able to assess the relative contributions of heterogeneous growth rates and of growth orientation. The use of uniform rather than heterogeneous growth rates only minorly impacted the shape predictions, whereas isotropic growth fields resulted in altered shape predictions. The simulation results suggest that growth anisotropy is the dominant influence on joint growth and morphogenesis. This study addresses the gap of the cellular processes underlying joint morphogenesis, with implications for understanding the aetiology of developmental joint disorders such as developmental dysplasia of the hip and arthrogryposis.
Collapse
Affiliation(s)
| | | | | | | | - Niamh C. Nowlan
- Imperial College LondonLondonUnited Kingdom,University College DublinDublinIreland
| |
Collapse
|
6
|
Doshi RM, Reid MY, Dixit NN, Fawcett EB, Cole JH, Saul KR. Location of brachial plexus birth injury affects functional outcomes in a rat model. J Orthop Res 2022; 40:1281-1292. [PMID: 34432311 PMCID: PMC8873217 DOI: 10.1002/jor.25173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023]
Abstract
Brachial plexus birth injury (BPBI) results in shoulder and elbow paralysis with shoulder internal rotation and elbow flexion contracture as frequent sequelae. The purpose of this study was to develop a technique for measuring functional movement and examine the effect of brachial plexus injury location (preganglionic and postganglionic) on functional movement outcomes in a rat model of BPBI, which we achieved through integration of gait analysis with musculoskeletal modeling and simulation. Eight weeks following unilateral brachial plexus injury, sagittal plane shoulder and elbow angles were extracted from gait recordings of young rats (n = 18), after which rats were sacrificed for bilateral muscle architecture measurements. Musculoskeletal models reflecting animal-specific muscle architecture parameters were used to simulate gait and extract muscle fiber lengths. The preganglionic neurectomy group spent significantly less (p = 0.00116) time in stance and walked with significantly less (p < 0.05) elbow flexion and shoulder protraction in the affected limb than postganglionic neurectomy or control groups. Linear regression revealed no significant linear relationship between passive shoulder external rotation and functional shoulder protraction range of motion. Despite significant restriction in longitudinal muscle growth, normalized functional fiber excursions did not differ significantly between groups. In fact, when superimposed on a normalized force-length curve, neurectomy-impaired muscle fibers (except subscapularis) accessed regions of the curve that overlapped with the control group. Our results suggest the presence of compensatory motor control strategies during locomotion following BPBI. The clinical implications of our findings support emphasis on functional movement analysis in treatment of BPBI, as functional and passive outcomes may differ substantially.
Collapse
Affiliation(s)
- Raveena M. Doshi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Monique Y. Reid
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Nikhil N. Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Emily B. Fawcett
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Jacqueline H. Cole
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Katherine R. Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| |
Collapse
|
7
|
Esrafilian A, Stenroth L, Mononen ME, Vartiainen P, Tanska P, Karjalainen PA, Suomalainen JS, Arokoski J, Saxby DJ, Lloyd DG, Korhonen RK. An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox. IEEE Trans Biomed Eng 2022; 69:2860-2871. [PMID: 35239473 DOI: 10.1109/tbme.2022.3156018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Joint tissue mechanics (e.g., stress and strain) are believed to have a major involvement in the onset and progression of musculoskeletal disorders, e.g., knee osteoarthritis (KOA). Accordingly, considerable efforts have been made to develop musculoskeletal finite element (MS-FE) models to estimate highly detailed tissue mechanics that predict cartilage degeneration. However, creating such models is time-consuming and requires advanced expertise. This limits these complex, yet promising MS-FE models to research applications with few participants and makes the models impractical for clinical assessments. Also, these previously developed MS-FE models have not been used to assess activities other than gait. This study introduces and verifies a semi-automated rapid state-of-the-art MS-FE modeling and simulation toolbox incorporating an electromyography- (EMG) assisted MS model and a muscle-force driven FE model of the knee with fibril-reinforced poro(visco)elastic cartilages and menisci. To showcase the usability of the pipeline, we estimated joint- and tissue-level knee mechanics in 15 KOA individuals performing different daily activities. The pipeline was verified by comparing the estimated muscle activations and joint mechanics to existing experimental data. To determine the importance of EMG-assisted MS approach, results were compared to those from the same FE models but driven by static-optimization-based MS models. The EMG-assisted MS-FE pipeline bore a closer resemblance to experiments compared to the static-optimization-based MS-FE pipeline. Importantly, the developed pipeline showed great potential as a rapid MS-FE analysis toolbox to investigate multiscale knee mechanics during different activities of individuals with KOA. The template FE model of the study is freely available here.
Collapse
|
8
|
Howe D, Dixit NN, Saul KR, Fisher MB. A Direct Comparison of Node and Element-Based Finite Element Modeling Approaches to Study Tissue Growth. J Biomech Eng 2022; 144:011001. [PMID: 34227653 PMCID: PMC8420794 DOI: 10.1115/1.4051661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 06/25/2021] [Indexed: 01/03/2023]
Abstract
Finite element analysis is a useful tool to model growth of biological tissues and predict how growth can be impacted by stimuli. Previous work has simulated growth using node-based or element-based approaches, and this implementation choice may influence predicted growth, irrespective of the applied growth model. This study directly compared node-based and element-based approaches to understand the isolated impact of implementation method on growth predictions by simulating growth of a bone rudiment geometry, and determined what conditions produce similar results between the approaches. We used a previously reported node-based approach implemented via thermal expansion and an element-based approach implemented via osmotic swelling, and we derived a mathematical relationship to relate the growth resulting from these approaches. We found that material properties (modulus) affected growth in the element-based approach, with growth completely restricted for high modulus values relative to the growth stimulus, and no restriction for low modulus values. The node-based approach was unaffected by modulus. Node- and element-based approaches matched marginally better when the conversion coefficient to relate the approaches was optimized based on the results of initial simulations, rather than using the theoretically predicted conversion coefficient (median difference in node position 0.042 cm versus 0.052 cm, respectively). In summary, we illustrate here the importance of the choice of implementation approach for modeling growth, provide a framework for converting models between implementation approaches, and highlight important considerations for comparing results in prior work and developing new models of tissue growth.
Collapse
Affiliation(s)
- Danielle Howe
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Nikhil N. Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
| | - Katherine R. Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 3162 Engineering Building III, 1840 Entrepreneur Dr, CB 7910, Raleigh, NC 27695
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 4130 Engineering Building III, 1840 Entrepreneur Drive, CB 7115, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695; Department of Orthopaedics, University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
9
|
Dixit NN, McCormick CM, Warren E, Cole JH, Saul KR. Preganglionic and Postganglionic Brachial Plexus Birth Injury Effects on Shoulder Muscle Growth. J Hand Surg Am 2021; 46:146.e1-146.e9. [PMID: 32919794 PMCID: PMC7864858 DOI: 10.1016/j.jhsa.2020.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Brachial plexus birth injury can differ in presentation, depending on whether the nerve ruptures distal to, or avulses proximal to, the dorsal root ganglion. More substantial contracture and bone deformity at the shoulder is typical in postganglionic injuries. However, changes to the underlying muscle structure that drive these differences in presentation are unclear. METHODS Seventeen Sprague-Dawley rats received preganglionic or postganglionic neurectomy on a single limb on postnatal days 3 and 4. Muscles crossing the shoulder were retrieved once the rats were sacrificed at 8 weeks after birth. External rotation range of motion, muscle mass, muscle length, muscle sarcomere length, and calculated optimal muscle length were measured bilaterally. RESULTS Average shoulder range of motion in the postganglionic group was 61.8% and 56.2% more restricted at 4 and 8 weeks, respectively, compared with that in the preganglionic group, but affected muscles after preganglionic injury were altered more severely (compared with the unaffected limb) than after postganglionic injury. Optimal muscle length in preganglionic injury was shorter in the affected limb (compared with the unaffected limb: -18.2% ± 9.2%) and to a greater extent than in postganglionic injury (-5.1% ± 6.2%). Muscle mass in preganglionic injury was lower in the affected limb (relative to the unaffected limb: -57.2% ± 24.1%) and to a greater extent than in postganglionic injury (-28.1% ± 17.7%). CONCLUSIONS The findings suggest that the presence of contracture does not derive from restricted longitudinal muscle growth alone, but also depends on the extent of muscle mass loss occurring simultaneously after the injury. CLINICAL RELEVANCE This study expands our understanding of differences in muscle architecture and the role of muscle structure in contracture formation for preganglionic and postganglionic brachial plexus birth injury.
Collapse
Affiliation(s)
- Nikhil N. Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| | - Carolyn M. McCormick
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh;,the Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC
| | - Eric Warren
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| | - Jacqueline H. Cole
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh;,the Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC
| | - Katherine R. Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| |
Collapse
|