1
|
Guo P, Zhang X, Xu H, Wang R, Li Y, Xu C, Yang Y, Zhang L, Adams R, Han J, Lyu J. Evaluating plantar biomechanics while descending a single step with different heights. Front Bioeng Biotechnol 2024; 12:1431988. [PMID: 39188374 PMCID: PMC11345276 DOI: 10.3389/fbioe.2024.1431988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Objective This study aims to investigate the plantar biomechanics of healthy young males as they descend a single transition step from varying heights. Methods Thirty healthy young males participated the experiment using the F-scan insole plantar pressure system in which participants made single transition steps descent from four step heights (5, 15, 25, and 35 cm), leading with their dominant or non-dominant foot. Plantar pressure data were collected for 5 s during the period between landing touchdown and standing on the ground. Landing at each step height was repeated three times, with a five-minute rest between different height trials. Results At 5 cm and 15 cm steps, participants demonstrated a rearfoot landing strategy on both sides. However, forefoot contact was observed at heights of 25 cm and 35 cm. Parameters related to center of plantar pressure (COP) of the leading foot were significantly larger compared to the trailing foot (P < 0.001), increased with higher step heights. Vertical ground reaction forces for the biped, leading and trailing feet decreased with increasing step height (all P < 0.05). The leading foot had a higher proportion of overall and forefoot loads, and a lower proportion of rearfoot load compared to the trailing foot (P < 0.001). The overall load on the dominant side was lower than that on the non-dominant side for both the leading and trailing feet (P < 0.001). For the trailing foot, forefoot load on the dominant side was lower than that on the non-dominant side, however, the opposite result appeared in rearfoot load (P < 0.001). Upon the leading foot landing, forefoot load exceeded the rearfoot load for the dominant (P < 0.001) and non-dominant sides (P < 0.001). Upon the trailing foot landing, forefoot load was lower than the rearfoot load for the dominant (P < 0.001) and non-dominant sides (P = 0.019). Conclusion When the characteristics of biomechanical stability are compromised by step height, landing foot, and footedness factors - due to altered foot landing strategies, changing COP, or uneven force distribution - ability to control motion efficiently and respond adaptively to the forces experienced during movement is challenged, increasing the likelihood of loss of dynamic balance, with a consequent increased risk of ankle sprains and falls.
Collapse
Affiliation(s)
- Panjing Guo
- Department of Orthopedics, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiajing Zhang
- Department of Orthopedics, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haoran Xu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ruiqin Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yumin Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chengshuo Xu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linlin Zhang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Roger Adams
- Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, Australia
| | - Jia Han
- Department of Orthopedics, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, Australia
| | - Jie Lyu
- Department of Orthopedics, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Altenburger P, Ambike SS, Haddad JM. Integrating Motor Variability Evaluation Into Movement System Assessment. Phys Ther 2023; 103:pzad075. [PMID: 37364059 DOI: 10.1093/ptj/pzad075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/26/2023] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Common assessment tools for determining therapeutic success in rehabilitation typically focus on task-based outcomes. Task-based outcomes provide some understanding of the individual's functional ability and motor recovery; however, these clinical outcomes may have limited translation to a patient's functional ability in the real world. Limitations arise because (1) the focus on task-based outcome assessment often disregards the complexity of motor behavior, including motor variability, and (2) mobility in highly variable real-world environments requires movement adaptability that is made possible by motor variability. This Perspective argues that incorporating motor variability measures that reflect movement adaptability into routine clinical assessment would enable therapists to better evaluate progress toward optimal and safe real-world mobility. The challenges and opportunities associated with incorporating variability-based assessment of pathological movements are also discussed. This Perspective also indicates that the field of rehabilitation needs to leverage technology to advance the understanding of motor variability and its impact on an individual's ability to optimize movement. IMPACT This Perspective contends that traditional therapeutic assessments do not adequately evaluate the ability of individuals to adapt their movements to the challenges faced when negotiating the dynamic environments encountered during daily life. Assessment of motor variability derived during movement execution can address this issue and provide better insight into a patient's movement stability and maneuverability in the real world. Creating such a shift in motor system assessment would advance understanding of rehabilitative approaches to motor system recovery and intervention.
Collapse
Affiliation(s)
- Peter Altenburger
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Satyajit S Ambike
- Department of Health & Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Jeffrey M Haddad
- Department of Health & Kinesiology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Caderby T, Lesport A, Turpin NA, Dalleau G, Watier B, Robert T, Peyrot N, Begue J. Influence of aging on the control of the whole-body angular momentum during volitional stepping: An UCM-based analysis. Exp Gerontol 2023; 178:112217. [PMID: 37224932 DOI: 10.1016/j.exger.2023.112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Evidence suggests that whole-body angular momentum (WBAM) is a highly controlled mechanical variable for performing our daily motor activities safely and efficiently. Recent findings have revealed that, compared to young adults, older adults exhibit larger range of WBAM during various motor tasks, such as walking and stepping. However, it remains unclear whether these age-related changes are ascribed to a poorer control of WBAM with age or not. The purpose of the present study was to examine the effect of normal aging on WBAM control during stepping. Twelve young adults and 14 healthy older adults performed a series of volitional stepping at their preferred selected speed. An Uncontrolled Manifold (UCM) analysis was conducted to explore the presence of synergies among the angular momenta of the body segments (elemental variables) to control WBAM (performance variable); i.e., to stabilize or destabilize it. Results revealed the existence of a stronger synergy destabilizing the WBAM in the sagittal-plane older adults compared to young adults during stepping, while there was no difference between the two groups in the frontal and transversal planes. Although older participants also had a larger range of WBAM in the sagittal plane compared to young adults, we found no significant correlation between synergy index and the range of WBAM in the sagittal plane. We concluded that the age-related changes in WBAM during stepping are not ascribed to alterations in the ability to control this variable with aging.
Collapse
Affiliation(s)
- Teddy Caderby
- Laboratoire IRISSE, EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, Le Tampon, France.
| | - Angélique Lesport
- Laboratoire IRISSE, EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, Le Tampon, France
| | - Nicolas A Turpin
- Laboratoire IRISSE, EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, Le Tampon, France
| | - Georges Dalleau
- Laboratoire IRISSE, EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, Le Tampon, France
| | - Bruno Watier
- LAAS-CNRS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Thomas Robert
- Laboratoire de Biomécanique et Mécanique des Chocs, LBMC UMR_T9406, Univ Lyon - Univ Gustave Eiffel, Lyon, France
| | - Nicolas Peyrot
- Laboratoire IRISSE, EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, Le Tampon, France; Mouvement - Interactions - Performance, MIP, Le Mans Université, EA 4334, 72000 Le Mans, France
| | - Jérémie Begue
- Laboratoire IRISSE, EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, Le Tampon, France
| |
Collapse
|
4
|
Vielemeyer J, Staufenberg NS, Schreff L, Rixen D, Müller R. Walking like a robot: do the ground reaction forces still intersect near one point when humans imitate a humanoid robot? ROYAL SOCIETY OPEN SCIENCE 2023; 10:221473. [PMID: 37266041 PMCID: PMC10230186 DOI: 10.1098/rsos.221473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Bipedal walking while keeping the upper body upright is a complex task. One strategy to cope with this task is to direct the ground reaction forces toward a point above the centre of mass of the whole body, called virtual pivot point (VPP). This behaviour could be observed in various experimental studies for human and animal walking, but not for the humanoid robot LOLA. The question arose whether humans still show a VPP when walking like LOLA. For this purpose, ten participants imitated LOLA in speed, posture, and mass distribution (LOLA-like walking). It could be found that humans do not differ from LOLA in spatio-temporal parameters for the LOLA-like walking, in contrast to upright walking with preferred speed. Eight of the participants show a VPP in all conditions (R2 > 0.90 ± 0.09), while two participants had no VPP for LOLA-like walking (R2 < 0.52). In the latter case, the horizontal ground reaction forces are not balanced around zero in the single support phase, which is presumably the key variable for the absence of the VPP.
Collapse
Affiliation(s)
- Johanna Vielemeyer
- Institute of Sport Sciences, Friedrich-Schiller-University Jena, 07737 Jena, Germany
- GaitLab, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany
| | - Nora-Sophie Staufenberg
- Munich Institute of Robotics and Machine Intelligence, Technical University Munich, 85748 Garching, Germany
| | - Lucas Schreff
- GaitLab, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany
- Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany
| | - Daniel Rixen
- Munich Institute of Robotics and Machine Intelligence, Technical University Munich, 85748 Garching, Germany
| | - Roy Müller
- GaitLab, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany
- Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Kulkarni A, Cui C, Rietdyk S, Ambike S. Humans prioritize walking efficiency or walking stability based on environmental risk. PLoS One 2023; 18:e0284278. [PMID: 37027387 PMCID: PMC10081767 DOI: 10.1371/journal.pone.0284278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
In human gait, the body's mechanical energy at the end of one step is reused to achieve forward progression during the subsequent step, thereby reducing the required muscle work. During the single stance phase, humans rely on the largely uncontrolled passive inverted pendular motion of the body to perpetuate forward motion. These passive body dynamics, while improving walking efficiency, also indicate lower passive dynamic stability in the anterior direction, since the individual will be less able to withstand a forward external perturbation. Here we test the novel hypothesis that humans manipulate passive anterior-posterior (AP) stability via active selection of step length to either achieve energy-efficient gait or to improve stability when it is threatened. We computed the AP margin of stability, which quantifies the passive dynamic stability of gait, for multiple steps as healthy young adults (N = 20) walked on a clear and on an obstructed walkway. Participants used passive dynamics to achieve energy-efficient gait for all but one step; when crossing the obstacle with the leading limb, AP margin of stability was increased. This increase indicated caution to offset the greater risk of falling after a potential trip. Furthermore, AP margin of stability increased while approaching the obstacle, indicating that humans proactively manipulate the passive dynamics to meet the demands of the locomotor task. Finally, the step length and the center of mass motion co-varied to maintain the AP margin of stability for all steps in both tasks at the specific values for each step. We conclude that humans actively regulate step length to maintain specific levels of passive dynamic stability for each step during unobstructed and obstructed gait.
Collapse
Affiliation(s)
- Ashwini Kulkarni
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chuyi Cui
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shirley Rietdyk
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
6
|
Locomotion control during curb descent: Bilateral ground reaction variables covary consistently during the double support phase regardless of future foot placement constraints. PLoS One 2022; 17:e0268090. [PMID: 36197891 PMCID: PMC9534401 DOI: 10.1371/journal.pone.0268090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
During community ambulation, anticipatory adaptations in gait are key for navigating built, populated and natural environments. It has been argued that some instability in gait can be functionally beneficial in situations demanding high maneuverability, and while the mechanisms utilized to maintain locomotor balance are well understood, relatively less is known about how the control of gait stability changes to facilitate upcoming maneuvers in challenging environments. The double support phase may be important in this regard; since both feet can push off the ground simultaneously, there is greater control authority over the body's movement during this phase. Our goal was to identify how this control authority is exploited to prepare for upcoming maneuvers in challenging environments. We used synergy indices to quantify the degree of coordination between the ground reaction forces and moments under the two feet for stabilizing the resultant force and moment on the body during the double support phase of curb descent. In contrast to our expectations, we observed that the kinetic synergy indices during curb descent were minimally influenced by expected foot targeting maneuvers for the subsequent step. Only the resultant moment in the frontal plane showed reduced stability when targeting was required, but the synergy index was still high, indicating that the resultant moment was stable. Furthermore, the synergy indices indicated that the main function of the ground reaction variables is to maintain stability of whole-body rotations during double support, and this prerogative was minimally influenced by the subsequent foot targeting tasks, likely because the cost of losing balance while descending a curb would be higher than the cost of mis-stepping on a visual target. Our work demonstrates the salience of stabilizing body rotations during curb negotiation and improves our understanding of locomotor control in challenging environments.
Collapse
|
7
|
Naik A, Ambike S. Expectation of volitional arm movement has prolonged effects on the grip force exerted on a pinched object. Exp Brain Res 2022; 240:2607-2621. [PMID: 35951095 DOI: 10.1007/s00221-022-06438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/04/2022] [Indexed: 12/29/2022]
Abstract
Humans closely coordinate the grip force exerted on a hand-held object with changes in the load arising from the object's dynamics. Recent work suggests the grip force is responsive to the predictability of the load forces as well. The well-known grip-force-load-force coupling is intermittent when the load arising from volitional movements fluctuates predictably, whereas grip force increases when loads are unpredictable. Here, we studied the influence of expected but uncertain volitional movements on the digit forces during a static grasp. Young, healthy participants used a pinch grasp to hold an instrumented object and track visual targets by moving the object. We quantified the mean grip force, the temporal decline in grip force (slacking), and the coupling between the pressing digit forces that yield the grip force during static prehension with no expectation of movement, and during the static phase of a choice reaction time task, when the participant expected to move the object after a variable duration. Simply expecting to move the object led to sustained (for at least 5 s) higher magnitude and lower slacking in the grip force, and weaker coupling between the pressing digit forces. These effects were modulated by the direction of the expected movement and the object's mass. The changes helped to maintain the safety margin for the current grasp and likely facilitated the transition from static to dynamic object manipulation. Influence of expected actions on the current grasp may have implications for manual dexterity and its well-known loss with age.
Collapse
Affiliation(s)
- Anvesh Naik
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Ave, West Lafayette, IN, 47907, USA
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Ave, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
dos Santos LO, Batistela RA, Moraes R. Gait control to step into a lowered surface with one limb with different demands for accuracy in younger and older adults. Exp Gerontol 2022; 161:111716. [DOI: 10.1016/j.exger.2022.111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/11/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
|
9
|
Vielemeyer J, Müller R, Staufenberg NS, Renjewski D, Abel R. Ground reaction forces intersect above the center of mass in single support, but not in double support of human walking. J Biomech 2021; 120:110387. [PMID: 33798969 DOI: 10.1016/j.jbiomech.2021.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
There are various simplifying models that describe balance strategies of human walking. In one model it is assumed that ground reaction forces are directed to a point (virtual pivot point) above the center of mass during the whole stride. This was observed in several experimental investigations, but only for the single support phase. It has not yet been concretely considered whether humans use the same stabilization strategy during the double support phase. For analyzing this, nine volunteers walked at self-selected speed while kinetic and kinematic data were measured. We found that in contrast to the single support phase, where the virtual pivot point was significantly above the center of mass, in the double support phase of human walking the ground reaction forces point around the center of mass with a small spread (R2=92.5%). The different heights of the virtual pivot point in the different support phases could be caused by the vertical movement of the center of mass, which has a lower amplitude in the double support phase. This is also reflected in the ground reaction forces, whereby the ratio of the horizontal and vertical ground reaction forces can explain the height of the virtual pivot point. In the double support phase the ratio is shifted in favor of the horizontal component compared to the single support phase, because of a shorter contact time and a delayed braking impulse. Thus, the whole body seems to rotate around the center of mass, which presumably minimizes required energy.
Collapse
Affiliation(s)
- Johanna Vielemeyer
- GaitLab, Klinikum Bayreuth GmbH, Hohe Warte 8, 95445 Bayreuth, Germany; Motionscience, Institute of Sport Sciences, Friedrich Schiller University Jena, Seidelstraße 20, 07749 Jena, Germany.
| | - Roy Müller
- GaitLab, Klinikum Bayreuth GmbH, Hohe Warte 8, 95445 Bayreuth, Germany; Motionscience, Institute of Sport Sciences, Friedrich Schiller University Jena, Seidelstraße 20, 07749 Jena, Germany
| | - Nora-Sophie Staufenberg
- Institute of Applied Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | - Daniel Renjewski
- Institute of Applied Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | - Rainer Abel
- Department of Ortopedic Surgery, Klinikum Bayreuth GmbH, Hohe Warte 8, 95445 Bayreuth, Germany
| |
Collapse
|
10
|
Sensitivity of the Toe Height to Multijoint Angular Changes in the Lower Limbs During Unobstructed and Obstructed Gait. J Appl Biomech 2021; 37:224-232. [PMID: 33691277 DOI: 10.1123/jab.2020-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Tripping while walking is a main contributor to falls across the adult lifespan. Trip risk is proportional to variability in toe clearance. To determine the sources of this variability, the authors computed for 10 young adults the sensitivity of toe clearance to 10 bilateral lower limb joint angles during unobstructed and obstructed walking when the lead and the trail limb crossed the obstacle. The authors computed a novel measure-singular value of the appropriate Jacobian-as the combined toe clearance sensitivity to 4 groups of angles: all sagittal and all frontal plane angles and all swing and all stance limb angles. Toe clearance was most sensitive to the stance hip ab/adduction for unobstructed gait. For obstructed gait, sensitivity to other joints increased and matched the sensitivity to stance hip ab/adduction. Combined sensitivities revealed critical information that was not evident in the sensitivities to individual angles. The combined sensitivity to stance limb angles was 84% higher than swing limb angles. The combined sensitivity to the sagittal plane angles was lower than the sensitivity to the frontal plane angles during unobstructed gait, and this relation was reversed during obstacle crossing. The results highlight the importance of the stance limb joints and indicate that frontal plane angles should not be ignored.
Collapse
|
11
|
Kulkarni A, Cho H, Rietdyk S, Ambike S. Step length synergy is weaker in older adults during obstacle crossing. J Biomech 2021; 118:110311. [PMID: 33601182 DOI: 10.1016/j.jbiomech.2021.110311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/27/2022]
Abstract
Community ambulation requires gait adaptations to navigate environmental obstacles. It is well known that while crossing obstacles, variables quantifying the gait pattern are controlled relative to the obstacle's position. However, the stability of these gait variables is underexplored. We measured foot positions relative to an obstacle as young and older adults stepped over it. We report secondary analysis of this data in which we quantified the stability of the step length when the two feet are placed on either side of the obstacle. We employed the uncontrolled manifold approach to test the hypotheses that (1) synergistic across-trial co-variation in the distances of the front and the back heel from the obstacle edge will stabilize the step length, and (2) older adults will display weaker synergies (i.e., lower step length stability). We observed that the front and back heel distances relative to the obstacle's edge co-varied synergistically to stabilize the step length for both age groups. Therefore, foot placement during obstacle navigation is controlled not only with reference to a feature of the environment (i.e. the obstacle), but also to stabilize the step length, presumably to control COM motion. The synergy index was 38% lower for older adults than young adults. This decline may be associated with aging-related functional deficits and tripping-related falls.
Collapse
Affiliation(s)
- Ashwini Kulkarni
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - HyeYoung Cho
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Shirley Rietdyk
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
12
|
Ambike S, Penedo T, Kulkarni A, Santinelli FB, Barbieri FA. Step length synergy while crossing obstacles is weaker in patients with Parkinson's disease. Gait Posture 2021; 84:340-345. [PMID: 33454501 DOI: 10.1016/j.gaitpost.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Impaired movement stability is a common symptom of Parkinson's disease (PD) that leads to falls and mishandled objects. Decline in synergistic stabilization of movement in PD patients has been observed in manual and postural tasks. However, locomotor synergies have not been quantified in PD patients. RESEARCH QUESTION The purpose of this work was to quantify the strength of the synergy stabilizing the step length while crossing an obstacle in PD patients. We hypothesized that (1) the distances of the front and rear feet relative to the obstacle would display compensatory across-trial co-variance that stabilizes step length in PD patients and age-matched controls, and (2) the step-length stabilization would be weaker in PD patients. METHODS Thirteen PD patients and eleven healthy age-matched controls walked up to and stepped over a 15 cm high obstacle fifteen times.We measured the distances of the rear and front foot toes from the obstacle during the crossing step. We used the uncontrolled manifold method to parse the across-trial variance in toe distances into a component that maintains the step length and a component that changes the step length. These variance components yielded the synergy index that quantified the stability of step length. RESULTS Step length was stabilized in PD patients as well as controls. However, the synergy index was 53% lower in the PD patients (p < 0.01). Thus, both our hypotheses were supported. SIGNIFICANCE This is the first study reporting impaired locomotor synergies in PD patients. Most PD patients in our sample were early stage (10 out of 13 patients were Hoehn-Yahr ≤ 2). Therefore, this result motivates further studies to establish step-length synergy during adaptive locomotor tasks as a biomarker for early detection of locomotor impairments in PD patients.
Collapse
Affiliation(s)
- Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States.
| | - Tiago Penedo
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Ashwini Kulkarni
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Felipe Balistieri Santinelli
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Fabio A Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|