1
|
Sadeqi S, Norte GE, Murray A, Erbulut DU, Goel VK. Effect of Whole Body Parameters on Knee Joint Biomechanics: Implications for ACL Injury Prevention During Single-Leg Landings. Am J Sports Med 2023; 51:2098-2109. [PMID: 37259968 DOI: 10.1177/03635465231174899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Previous studies have examined the effect of whole body (WB) parameters on anterior cruciate ligament (ACL) strain and loads, as well as knee joint kinetics and kinematics. However, articular cartilage damage occurs in relation to ACL failure, and the effect of WB parameters on ACL strain and articular cartilage biomechanics during dynamic tasks is unclear. PURPOSES (1) To investigate the effect of WB parameters on ACL strain, as well as articular cartilage stress and contact force, during a single-leg cross drop (SLCD) and single-leg drop (SLD). (2) To identify WB parameters predictive of high ACL strain during these tasks. STUDY DESIGN Descriptive laboratory study. METHODS Three-dimensional motion analysis data from 14 physically active men and women were recorded during an SLCD and SLD. OpenSim was used to obtain their kinematics, kinetics, and muscle forces for the WB model. Using these data in kinetically driven finite element simulations of the knee joint produced outputs of ACL strains and articular cartilage stresses and contact forces. Spearman correlation coefficients were used to assess relationships between WB parameters and ACL strain and cartilage biomechanics. Moreover, receiver operating characteristic curve analyses and multivariate binary logistic regressions were used to find the WB parameters that could discriminate high from low ACL strain trials. RESULTS Correlations showed that more lumbar rotation away from the stance limb at peak ACL strain had the strongest overall association (ρ = 0.877) with peak ACL strain. Higher knee anterior shear force (ρ = 0.895) and lower gluteus maximus muscle force (ρ = 0.89) at peak ACL strain demonstrated the strongest associations with peak articular cartilage stress or contact force in ≥1 of the analyzed tasks. The regression model that used muscle forces to predict high ACL strain trials during the dominant limb SLD yielded the highest accuracy (93.5%), sensitivity (0.881), and specificity (0.952) among all regression models. CONCLUSION WB parameters that were most consistently associated with and predictive of high ACL strain and poor articular cartilage biomechanics during the SLCD and SLD tasks included greater knee abduction angle at initial contact and higher anterior shear force at peak ACL strain, as well as lower gracilis, gluteus maximus, and medial gastrocnemius muscle forces. CLINICAL RELEVANCE Knowledge of which landing postures create a high risk for ACL or cartilage injury may help reduce injuries in athletes by avoiding those postures and practicing the tasks with reduced high-risk motions, as well as by strengthening the muscles that protect the knee during single-leg landings.
Collapse
Affiliation(s)
- Sara Sadeqi
- Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering and Orthopaedic Surgery, University of Toledo, Toledo, OH, USA
| | - Grant E Norte
- Motion Analysis and Integrative Neurophysiology Lab, Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, Ohio, USA
| | - Amanda Murray
- Motion Analysis and Integrative Neurophysiology Lab, Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, Ohio, USA
| | - Deniz U Erbulut
- Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering and Orthopaedic Surgery, University of Toledo, Toledo, OH, USA
| | - Vijay K Goel
- Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering and Orthopaedic Surgery, University of Toledo, Toledo, OH, USA
| |
Collapse
|
2
|
Barrett JM, Healey LA, McKinnon CD, Laing AC, Dickerson CR, Fischer SL, Callaghan JP. Head supported mass, moment of inertia, neck loads and stability: A simulation study. J Biomech 2023; 146:111416. [PMID: 36584505 DOI: 10.1016/j.jbiomech.2022.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/01/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Occupations or activities where donning head-supported mass (HSM) is commonplace put operators at an elevated risk of chronic neck pain. Yet, there is no consensus about what features of HSM influence the relative contributions to neck loads. Therefore, we tested four hypotheses that could increase neck loads: (i) HSM increases gravitational moments; (ii) more muscle activation is required to stabilize the head with HSM; (iii) the position of the HSM centre of mass (COM) induces gravitational moments; and (iv) the added moment of inertia (MOI) from HSM increases neck loads during head repositioning tasks. We performed a sensitivity analysis on the C5-C6 compression evaluated from a 24-degree freedom cervical spine model in OpenSim for static and dynamic movement trials. For static trials, we varied the magnitude of HSM, the position of its COM, and developed a novel stability constraint for static optimization. In dynamic trials, we varied HSM and the three principle MOIs. HSM magnitude and compression were linearly related to one another for both static and dynamic trials, with amplification factors varying between 1.9 and 3.9. Similar relationships were found for the COM position, although the relationship between C5-C6 peak compression and MOI in dynamic trials was generally nonlinear. This sensitivity analysis uncovered evidence in favour of hypotheses (i), (ii) and (iii). However, the model's prediction of C5-C6 compression was not overly sensitive to the magnitude of MOI. Therefore, the HSM mass properties may be more influential on neck compression than MOI properties, even during dynamic tasks.
Collapse
Affiliation(s)
- Jeff M Barrett
- University of Waterloo, Department of Kinesiology & Health Sciences, Canada.
| | | | | | - Andrew C Laing
- University of Waterloo, Department of Kinesiology & Health Sciences, Canada.
| | - Clark R Dickerson
- University of Waterloo, Department of Kinesiology & Health Sciences, Canada.
| | - Steven L Fischer
- University of Waterloo, Department of Kinesiology & Health Sciences, Canada.
| | - Jack P Callaghan
- University of Waterloo, Department of Kinesiology & Health Sciences, Canada.
| |
Collapse
|
3
|
Rodrigues R, Gonçalves V, Casagrande R, Cemin F, Nodari C, Borges I, Fitarelli L, Bianchesse J, Rocha ESD, Rabello R. Are proximal and distal neuromuscular parameters able to predict hip and knee frontal plane kinematics during single-leg landing? Phys Ther Sport 2023; 59:30-36. [PMID: 36481454 DOI: 10.1016/j.ptsp.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE To determine if proximal and distal neuromuscular parameters (EMG amplitude and median frequency - MDF) can predict frontal plane kinematics during single-leg landing. STUDY DESIGN Cross sectional study. SETTING Laboratory. PARTICIPANTS Fifteen participants (7 female) performed six single-leg landings with measures of frontal plane kinematics and EMG obtained 230 ms after first foot contact, totalizing 90 landings. MAIN OUTCOME MEASURES (i) 2D hip adduction [hip ADD] and knee frontal plane projection angle [knee FPPA]; (ii) EMG amplitude and MDF of gluteus medius [GMed], tensor fascia latae [TFL], peroneus longus [PL] and tibialis anterior [TA]. RESULTS We observed that MDF of TA was a significant predictor of hip ADD (p = 0.037; β = -0.049 Hz; R2c = 0.30). Also, MDF of PL was significant predictor of knee FPPA (p = 0.043; β = 0.042 Hz; R2c = 0.37). Hip muscles and EMG amplitude parameters were not considered predictors of frontal plane kinematics. CONCLUSION The firing frequency of ankle muscles predicted the variance of hip and knee frontal plane kinematics during single-leg landing.
Collapse
Affiliation(s)
- Rodrigo Rodrigues
- Institute of Education, Federal University of Rio Grande, Rio Grande, RS, Brazil.
| | - Vagner Gonçalves
- Exercise Physiology and Physical Assessment Laboratory, Serra Gaucha University Center, Caxias do Sul, RS, Brazil
| | - Rafael Casagrande
- Exercise Physiology and Physical Assessment Laboratory, Serra Gaucha University Center, Caxias do Sul, RS, Brazil
| | - Fabrício Cemin
- Exercise Physiology and Physical Assessment Laboratory, Serra Gaucha University Center, Caxias do Sul, RS, Brazil
| | - Camila Nodari
- Exercise Physiology and Physical Assessment Laboratory, Serra Gaucha University Center, Caxias do Sul, RS, Brazil
| | - Iury Borges
- Exercise Physiology and Physical Assessment Laboratory, Serra Gaucha University Center, Caxias do Sul, RS, Brazil
| | - Luan Fitarelli
- Exercise Physiology and Physical Assessment Laboratory, Serra Gaucha University Center, Caxias do Sul, RS, Brazil
| | - Jean Bianchesse
- Exercise Physiology and Physical Assessment Laboratory, Serra Gaucha University Center, Caxias do Sul, RS, Brazil
| | - Emmanuel Souza da Rocha
- Department of Physical Therapy, Integrated Colleges of Taquara, Taquara, RS, Brazil; Physical Activity, Sport and Health Research Group, Department of Physical Therapy, Sogipa Faculty, Porto Alegre, RS, Brazil
| | - Rodrigo Rabello
- Department of Biomedical Sciences for Health, University of Milan, Milan, MI, Italy
| |
Collapse
|
4
|
Cannon J, Kulig K, Weber AE, Powers CM. Gluteal activation during squatting reduces acetabular contact pressure in persons with femoroacetabular impingement syndrome: A patient-specific finite element analysis. Clin Biomech (Bristol, Avon) 2023; 101:105849. [PMID: 36549048 DOI: 10.1016/j.clinbiomech.2022.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Femoroacetabular impingement syndrome is a motion-related clinical disorder resulting from abnormal hip joint morphology. Mechanical impingement, in which the aspherical femoral head (cam morphology) abuts with the acetabular rim, is created with simultaneous hip flexion, internal rotation, and adduction. Impaired function of the gluteal muscles may be contributory to femoroacetabular impingement syndrome progression. The purpose of this study was to assess the influence of gluteal muscle recruitment on acetabular contact pressure during squatting in persons with cam femoroacetabular impingement syndrome. METHODS Eight individuals (4 males, 4 females) with a diagnosis of cam femoroacetabular impingement syndrome underwent CT imaging of the pelvis and proximal femora, and a biomechanical assessment of squatting (kinematics, kinetics, and electromyography). Two maximal depth bodyweight squat conditions were evaluated: 1) non-cued squatting; and 2) cued gluteal activation squatting. Utilizing subject-specific electromyography-driven hip and finite element modeling approaches, hip muscle activation, kinematics, bone-on-bone contact forces, and peak acetabular contact pressure were compared between squat conditions. FINDINGS Modest increases in gluteus maximus (7% MVIC, P < 0.0001) and medius (6% MVIC, P = 0.009) activation were able to reduce hip internal rotation on average 5° (P = 0.024), and in doing so reduced acetabular contact pressure by 32% (P = 0.023). Reductions in acetabular contact pressure occurred despite no change in hip abduction and increased bone-on-bone contact forces occurring in the cued gluteal activation condition. INTERPRETATION Our findings highlight the importance of gluteal activation in minimizing mechanical impingement and provide a foundation for interventions aimed at preventing the development and progression of femoroacetabular impingement syndrome.
Collapse
Affiliation(s)
- Jordan Cannon
- Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA; Comparative Neuromuscular Biomechanics Laboratory, Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kornelia Kulig
- Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Alexander E Weber
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher M Powers
- Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Knapik GG, Mendel E, Bourekas E, Marras WS. Computational lumbar spine models: A literature review. Clin Biomech (Bristol, Avon) 2022; 100:105816. [PMID: 36435080 DOI: 10.1016/j.clinbiomech.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Computational spine models of various types have been employed to understand spine function, assess the risk that different activities pose to the spine, and evaluate techniques to prevent injury. The areas in which these models are applied has expanded greatly, potentially beyond the appropriate scope of each, given their capabilities. A comprehensive understanding of the components of these models provides insight into their current capabilities and limitations. METHODS The objective of this review was to provide a critical assessment of the different characteristics of model elements employed across the spectrum of lumbar spine modeling and in newer combined methodologies to help better evaluate existing studies and delineate areas for future research and refinement. FINDINGS A total of 155 studies met selection criteria and were included in this review. Most current studies use either highly detailed Finite Element models or simpler Musculoskeletal models driven with in vivo data. Many models feature significant geometric or loading simplifications that limit their realism and validity. Frequently, studies only create a single model and thus can't account for the impact of subject variability. The lack of model representation for certain subject cohorts leaves significant gaps in spine knowledge. Combining features from both types of modeling could result in more accurate and predictive models. INTERPRETATION Development of integrated models combining elements from different model types in a framework that enables the evaluation of larger populations of subjects could address existing voids and enable more realistic representation of the biomechanics of the lumbar spine.
Collapse
Affiliation(s)
- Gregory G Knapik
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA.
| | - Ehud Mendel
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Eric Bourekas
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - William S Marras
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Cannon J, Weithman BA, Powers CM. Activation training facilitates gluteus maximus recruitment during weight-bearing strengthening exercises. J Electromyogr Kinesiol 2022; 63:102643. [DOI: 10.1016/j.jelekin.2022.102643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
|
7
|
Sheikhi B, Letafatkar A, Thomas AC. Comparing myofascial meridian activation during single leg vertical drop jump in patients with anterior cruciate ligament reconstruction and healthy participants. Gait Posture 2021; 88:66-71. [PMID: 34004589 DOI: 10.1016/j.gaitpost.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Muscles work synergistically to support the body during landing. Myofascial meridians have been described to classify muscles into functional synergies. The role that these functional lines plays in positioning the trunk and lower extremity of patients with anterior cruciate ligament reconstruction (ACLR) and healthy athletes during drop landing tasks remains unclear. RESEARCH QUESTION The purpose of this study was to compare the front and back functional lines (FFL and BFL) muscle activation in patients with ACLR and healthy participants during single leg vertical drop jump (SLVDJ). METHODS Thirty-two male athletes (post-ACLR = 16, healthy = 16) participated (age = 23.3 ± 2.3 years). Superficial electromyography of FFL (adductor longus [AL], rectus abdominis [RA], pectoralis major) and BFL (vastus lateralis [VL], gluteus maximus [GMax], latissimus dorsi [LD]) was collected during the SLVDJ and compared at initial contact and maximum knee flexion between groups using t-tests and limbs using paired-samples t-tests. RESULTS In the FFL, the AL (p < 0.05) and RA (p < 0.05) muscles were more active in the healthy group compared to the ACLR group at initial contact and maximum knee flexion. PM demonstrated greater activation in the healthy group only at maximum knee flexion (p < 0.05). In the BFL, the VL (p < 0.05) and GMax (p < 0.05) muscles were more active in the ACLR group, whereas the LD (p < 0.05) muscles demonstrated greater activation in the healthy group at initial contact and maximum knee flexion. There were no healthy group inter-limb differences in FFL and BFL activation. ACLR participants demonstrated greater non-injured limb VL, AL, GMax and LD activation (p < 0.05) and greater injured limb PM and RA activation (p < 0.05). SIGNIFICANCE Based on the present data, patients after ACLR may present with an alteration in BFL and FFL muscles activation during a drop jump task. Functional line muscles during dynamic activities may change lower extremity positioning and lead to increase ACL injury risk.
Collapse
Affiliation(s)
- Bahram Sheikhi
- Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.
| | - Amir Letafatkar
- Sport Injury and Corrective Exercises, Kharazmi University, Tehran, Iran.
| | - Abbey C Thomas
- Department of Kinesiology, University of North Carolina at Charlotte Charlotte, NC, United States.
| |
Collapse
|